Ventricular fibrillation induced by extra-stimuli on a three-dimensional computer cardiac model

1992 ◽  
Vol 25 ◽  
pp. 112 ◽  
Author(s):  
Osamu Okazaki ◽  
Daming Wei ◽  
Kenichi Harumi
Author(s):  
Ana Maria Saaibi ◽  
Isaac Chang ◽  
Min-Sig Hwang ◽  
Malisa Sarntinoranont

Cardiac function is influenced by the three-dimensional organization of the myocardial fibers. Cardiac fibers are arranged in a circumferential, longitudinal, and a sheet-like fashion, forming counter-wound helices from the base to the apex of the heart. This fiber organization is responsible for the delicate balance between mechanical and electrical functioning of the heart. When electrical disruption of this coordinated function occurs, this is associated with cardiac arrhythmias which may lead to more serious conditions like ventricular fibrillation.


2004 ◽  
Vol 14 (06) ◽  
pp. 883-911 ◽  
Author(s):  
PIERO COLLI FRANZONE ◽  
LUCA F. PAVARINO

In this work, a parallel three-dimensional solver for numerical simulations in computational electrocardiology is introduced and studied. The solver is based on the anisotropic Bidomain cardiac model, consisting of a system of two degenerate parabolic reaction–diffusion equations describing the intra and extracellular potentials of the myocardial tissue. This model includes intramural fiber rotation and anisotropic conductivity coefficients that can be fully orthotropic or axially symmetric around the fiber direction. The solver also includes the simpler anisotropic Monodomain model, consisting of only one reaction–diffusion equation. These cardiac models are coupled with a membrane model for the ionic currents, consisting of a system of ordinary differential equations that can vary from the simple FitzHugh–Nagumo (FHN) model to the more complex phase-I Luo–Rudy model (LR1). The solver employs structured isoparametric Q1finite elements in space and a semi-implicit adaptive method in time. Parallelization and portability are based on the PETSc parallel library. Large-scale computations with up to O(107) unknowns have been run on parallel computers, simulating excitation and repolarization phenomena in three-dimensional domains.


2000 ◽  
Vol 279 (4) ◽  
pp. H1737-H1747 ◽  
Author(s):  
Gordon L. Pierpont ◽  
Sumeet S. Chugh ◽  
John A. Hauck ◽  
Charles C. Gornick

Because congestive heart failure (CHF) promotes ventricular fibrillation (VF), we compared VF in seven dogs with CHF induced by combined myocardial infarction and rapid ventricular pacing to VF in six normal dogs. A noncontact, multielectrode array balloon catheter provided full-surface real-time left ventricular (LV) endocardial electrograms and a dynamic color-coded display of endocardial activation projected onto a three-dimensional model of the LV. Fast Fourier transform (FFT) analysis of virtual electrograms showed no difference in peak or centroid frequency in CHF dogs compared with normals. The average number of simultaneous noncontiguous wavefronts present during VF was higher in normals (2.4 ± 1.0 at 10 s of VF) than in CHF dogs (1.3 ± 1.0, P < 0.005) and decreased in both over time. The wavefront “turnover” rate, estimated using FFT of the noncontiguous wavefront data, did not differ between normals and CHF and did not change over 5 min of VF. Thus the fundamental frequency characteristics of VF are unaltered by CHF, but dilated abnormal ventricles sustain fewer active wavefronts than do normal ventricles.


1999 ◽  
Vol 09 (04) ◽  
pp. 695-704 ◽  
Author(s):  
V. N. BIKTASHEV ◽  
A. V. HOLDEN ◽  
S. F. MIRONOV ◽  
A. M. PERTSOV ◽  
A. V. ZAITSEV

Ventricular fibrillation is believed to be produced by the breakdown of re-entrant propagation waves of excitation into multiple re-entrant sources. These re-entrant waves may be idealized as spiral waves in two-dimensional, and scroll waves in three-dimensional excitable media. Optically monitored, simultaneously recorded endocardial and epicardial patterns of activation on the ventricular wall do not always show spiral waves. We show that numerical simulations, even with a simple homogeneous excitable medium, can reproduce the key features of the simultaneous endo- and epicardial visualizations of propagating activity, and so these recordings may be interpreted in terms of scroll waves within the ventricular wall.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2242
Author(s):  
William A. Ramírez ◽  
Alessio Gizzi ◽  
Kevin L. Sack ◽  
Simonetta Filippi ◽  
Julius M. Guccione ◽  
...  

Computational cardiology is rapidly becoming the gold standard for innovative medical treatments and device development. Despite a worldwide effort in mathematical and computational modeling research, the complexity and intrinsic multiscale nature of the heart still limit our predictability power raising the question of the optimal modeling choice for large-scale whole-heart numerical investigations. We propose an extended numerical analysis among two different electrophysiological modeling approaches: a simplified phenomenological one and a detailed biophysical one. To achieve this, we considered three-dimensional healthy and infarcted swine heart geometries. Heterogeneous electrophysiological properties, fine-tuned DT-MRI -based anisotropy features, and non-conductive ischemic regions were included in a custom-built finite element code. We provide a quantitative comparison of the electrical behaviors during steady pacing and sustained ventricular fibrillation for healthy and diseased cases analyzing cardiac arrhythmias dynamics. Action potential duration (APD) restitution distributions, vortex filament counting, and pseudo-electrocardiography (ECG) signals were numerically quantified, introducing a novel statistical description of restitution patterns and ventricular fibrillation sustainability. Computational cost and scalability associated with the two modeling choices suggests that ventricular fibrillation signatures are mainly controlled by anatomy and structural parameters, rather than by regional restitution properties. Finally, we discuss limitations and translational perspectives of the different modeling approaches in view of large-scale whole-heart in silico studies.


2013 ◽  
Vol 8 (1) ◽  
Author(s):  
Arudo Hiraoka ◽  
Masahiko Kuinose ◽  
Toshinori Totsugawa ◽  
Genta Chikazawa ◽  
Hidenori Yoshitaka

2018 ◽  
Vol 33 (5) ◽  
pp. 433-442
Author(s):  
任国印 REN Guo-yin ◽  
吕晓琪 LV Xiao-qi ◽  
杨 楠 YANG Nan ◽  
喻大华 YU Da-hua

Sign in / Sign up

Export Citation Format

Share Document