Water-table fluctuation in semipervious stream-unconfined aquifer systems

1973 ◽  
Vol 19 (1) ◽  
pp. 43-52 ◽  
Author(s):  
M.A. Marino
1970 ◽  
Vol 1 (2) ◽  
pp. 119-122
Author(s):  
Birendra Sapkota

The Dang valley consists of several patches of confined and unconfined aquifer systems. Drilling data reveals that the northern portion of the study area has more permeable surfaces than the southern and central portions. Annual domestic draft and safe yield were calculated to be 7.43 x106 m3/year and 3.16 x 107 m3/year, respectively. The fact that the safe yield is higher than the annual draft indicates the presence of good groundwater potential in the study area. Key words: terrace, lithology, aquifer, tubewell, yield, draft, piezometric surface, water table Himalayan Journal of Sciences 1(2): 119-122, 2003


1987 ◽  
Vol 22 (1) ◽  
pp. 49-64 ◽  
Author(s):  
J.F. Devlin ◽  
W.A. Gorman

Abstract The Gloucester Landfill is located near Ottawa, Ontario, on a northeast trending ridge of Quaternary age. The ridge comprises outwash sediments which make up two aquifer systems. A confined system exists next to bedrock, and is overlain by a silty-clayey stratum (the confining layer) which is, in turn, overlain by an unconfined aquifer system. Two independent volatile organic plumes have previously been identified at the landfill: the southeast plume, which has penetrated the confined aquifer system, and the northeast plume which is migrating in the unconfined aquifer. The distribution of volatile organic contaminants at the northeast plume site appears to be a function of two factors: (1) heterogeneities in the aquifer sediments are causing the channeling of contaminants through a narrow path; (2) the low fraction of organic carbon in the unconfined aquifer sediments at the northeast site is resulting in little retardation of the contaminants there, relative to those at the southeast site. Acetate was the only volatile fatty acid detected in the leachate. It was measurable only in areas where the volatile organic contamination was significant. Although methane was detected in the contaminated sediments, suggesting that microbial activity was present, the high concentration of acetate (>1000 ppm) which was detected down-gradient from the source area indicates that any biodegradation which is occurring is proceeding at a very slow rate.


2017 ◽  
Vol 31 (19) ◽  
pp. 3437-3451 ◽  
Author(s):  
Azizallah Izady ◽  
Osman A.E. Abdalla ◽  
Ata Joodavi ◽  
Akbar Karimi ◽  
Mingjie Chen ◽  
...  

Author(s):  
Reem Ismail ◽  
Saeid Shafieiyoun ◽  
Riyadh Al Raoush ◽  
Fereidoun Rezanezhad

Most of the prediction theories regarding dissolution of organic contaminants in the subsurface systems have been proposed based on the static water conditions; and the influence of water fluctuations on mass removal requires further investigations. In this study, it was intended to investigate the effects of water table fluctuations on biogeochemical properties of the contaminated soil at the smear zone between the vadose zone and the groundwater table. An automated 60 cm soil column system was developed and connected to a hydrostatic equilibrium reservoir to impose the water regime by using a multi-channel pump. Four homogenized hydrocarbon contaminated soil columns were constructed and two of them were fully saturated and remained under static water conditions while another two columns were operated under water table fluctuations between the soil surface and 40 cm below it. The experiments were run for 150 days and relevant geochemical indicators as well as dissolved phase concentrations were analyzed at 30 and 50 cm below the soil surface in all columns. The results indicated significant difference in terms of biodegradation effectiveness between the smear zones exposed to static and water table fluctuation conditions. This presentation will provide an overview of the experimental approach, mass removal efficiency, and key findings.


Author(s):  
Hamed Nozari ◽  
Abdolmajid Liaghat ◽  
Saeed Azadi ◽  
Azin Poursadri ◽  
Behzad Ghanbarian

Abstract Accurate simulations of wastewater quality and quantity, particularly in saline and semi-arid areas, are important in agricultural water management. In this study a system dynamics (SD) approach was proposed to simulate drainage water and groundwater salinities, water table fluctuation, and drainage discharge at field-scale. The results of the SD approach were compared with results from DRAINMOD-S, a computer simulation model. For model validation, earlier experimental data from two field units were used. The field units each contained three rows of piezometers. During irrigation, daily water table fluctuation, drainage discharge, irrigation and drainage water salinity, and the salinity in each piezometer, were measured. The SD approach simulated these parameters more accurately than DRAINMOD-S for both units.


Sign in / Sign up

Export Citation Format

Share Document