Kinetics of staphylococcal opsonization, attachment, ingestion and killing by human polymorphonuclear leukocytes: A quantitative assay using [3H] thymidine labeled bacteria

1977 ◽  
Vol 14 (3-4) ◽  
pp. 303-311 ◽  
Author(s):  
Jan Verhoef ◽  
Phillip K. Peterson ◽  
Paul G. Quie
1996 ◽  
Vol 40 (3) ◽  
pp. 739-742 ◽  
Author(s):  
M Ozaki ◽  
K Komori ◽  
M Matsuda ◽  
R Yamaguchi ◽  
T Honmura ◽  
...  

The uptake of NM394, a new quinolone, by and its subsequent elution from human polymorphonuclear leukocytes were studied and compared with those of ofloxacin and ciprofloxacin. The kinetics of the uptake of NM394 was similar to that of ciprofloxacin. The maximum intracellular-to-extracellular concentration ratio was 12.3, compared with 8.6 for ciprofloxacin and 4.9 for ofloxacin at the extracellular concentration of 20 micrograms/ml. The elution of NM394 from human polymorphonuclear leukocytes occurs relatively slowly; 5 min after the removal of extracellular NM394, nearly 100% still remained in polymorphonuclear leukocytes, compared with ofloxacin, which was so rapidly eluted that only 12% remained. The uptake of NM394 was significantly decreased at 4 degrees C and by the presence of NaCN but was not affected by the presence of L-glycine, L-leucine, L-serine, adenosine, or NaF. NM394 showed intracellular activity at a concentration of 0.1 microgram/ml that significantly reduced the number of phagocytosed Pseudomonas aeruginosa cells with 2 h of incubation. These results suggest that uptake of NM394 by human polymorphonuclear leukocytes occurs via an active transport system differing from that of ofloxacin, whose uptake is affected by the presence of L-glycine and L-leucine, and that once accumulated, NM394 remains intracellularly active and participates in protection against bacterial infection.


1992 ◽  
Vol 119 (5) ◽  
pp. 1261-1270 ◽  
Author(s):  
L Cassimeris ◽  
D Safer ◽  
V T Nachmias ◽  
S H Zigmond

Thymosin beta 4 (T beta 4), a 5-kD peptide which binds G-actin and inhibits its polymerization (Safer, D., M. Elzinga, and V. T. Nachmias. 1991. J. Biol. Chem. 266:4029-4032), appears to be the major G-actin sequestering protein in human PMNs. In support of a previous study by Hannappel, E., and M. Van Kampen (1987. J. Chromatography. 397:279-285), we find that T beta 4 is an abundant peptide in these cells. By reverse phase HPLC of perchloric acid supernatants, human PMNs contain approximately 169 fg/cell +/- 90 fg/cell (SD), corresponding to a cytoplasmic concentration of approximately 149 +/- 80.5 microM. On non-denaturing polyacrylamide gels, a large fraction of G-actin in supernatants prepared from resting PMNs has a mobility similar to the G-actin/T beta 4 complex. Chemoattractant stimulation of PMNs results in a decrease in this G-actin/T beta 4 complex. To determine whether chemoattractant induced actin polymerization results from an inactivation of T beta 4, the G-actin sequestering activity of supernatants prepared from resting and chemoattractant stimulated cells was measured by comparing the rates of pyrenyl-actin polymerization from filament pointed ends. Pyrenyl actin polymerization was inhibited to a greater extent in supernatants from stimulated cells and these results are qualitatively consistent with T beta 4 being released as G-actin polymerizes, with no chemoattractant-induced change in its affinity for G-actin. The kinetics of bovine spleen T beta 4 binding to muscle pyrenyl G-actin are sufficiently rapid to accommodate the rapid changes in actin polymerization and depolymerization observed in vivo in response to chemoattractant addition and removal.


Blood ◽  
1997 ◽  
Vol 89 (6) ◽  
pp. 2139-2147 ◽  
Author(s):  
Suzanne J. Suchard ◽  
Vania Hinkovska-Galcheva ◽  
Pamela J. Mansfield ◽  
Laurence A. Boxer ◽  
James A. Shayman

Abstract Ceramide is a product of agonist-induced sphingolipid metabolism in several cell types, including polymorphonuclear leukocytes (PMNs). In adherent PMNs, the kinetics of ceramide production correspond with the termination of fMLP-stimulated H2O2 release. Furthermore, short chain ceramides inhibit fMLP-mediated H2O2 release in adherent PMNs. In the present study, we investigated the effects of short chain ceramides and sphingoid bases on phagocytosis of IgG-opsonized erythrocytes (EIgG) by suspended PMNs activated with fMLP. N-Acetylsphingosine, N-acetylphytosphingosine, phytosphingosine, sphingosine, and dihydrosphingosine, but not N-acetyldihydrosphingosine, inhibited phagocytosis of EIgG. In contrast, these same lipids did not inhibit fMLP-mediated chemotaxis. Endogenous ceramide levels increased within the first few minutes of phagocytosis, with a significant (P < .05) accumulation by 30 minutes, the time by which phagocytosis was terminated. Neutral sphingomyelinase activity paralleled the increase in ceramide, consistent with the generation of ceramide by the hydrolysis of sphingomyelin. The N-acetyl-conjugated sphingols (C2 ceramides) blocked phosphatidylethanol formation indicating that phospholipase D (PLD) is an intracellular target of ceramide action. These data suggest that ceramides, generated through activation of the sphingomyelin cycle, act as negative regulators of FcγR-mediated phagocytosis.


1979 ◽  
Vol 44 (10) ◽  
pp. 3177-3182 ◽  
Author(s):  
Mária Stančíková ◽  
Karel Trnavský

Cathepsin G was isolated from human polymorphonuclear leukocytes and purified by affinity chromatography on Antilysin-Sepharose column. Purified enzyme activated later collagenase isolated from leukocytes. Activation at 36°C was maximal after 30 min incubation. Inhibitors of cathepsin G - soya-bean trypsin inhibitor, diisopropyl phosphofluoridate and Antilysin were active in inhibiting the activation of latent collagenase by cathepsin G.


Sign in / Sign up

Export Citation Format

Share Document