Diuresis in the cabbage white butterfly, Pieris brassicae: Water and ion regulation and the rôle of the hindgut

1976 ◽  
Vol 22 (12) ◽  
pp. 1623-1630 ◽  
Author(s):  
Susan W. Nicolson
2009 ◽  
Vol 296 (5) ◽  
pp. R1650-R1660 ◽  
Author(s):  
Yi-Fang Wang ◽  
Yung-Che Tseng ◽  
Jia-Jiun Yan ◽  
Junya Hiroi ◽  
Pung-Pung Hwang

The thiazide-sensitive Na+-Cl− cotransporter (NCC), a member of the SLC12 family, is mainly expressed in the apical membrane of the mammalian distal convoluted tubule (DCT) cells, is responsible for cotransporting Na+ and Cl− from the lumen into DCT cells and plays a major role in the mammalian renal NaCl reabsorption. The NCC has also been reported in fish, but the functional role in fish ion regulation is yet unclear. The present study used zebrafish as an in vivo model to test the hypothesis of whether the NCC plays a role in Na+ and/or Cl− uptake mechanisms. Four NCCs were cloned, and only one of them, zebrafish (z) slc12a10.2 was found to predominately and specifically be expressed in gills. Double in situ hybridization/immunocytochemistry in zebrafish skin/gills demonstrated that the specific expression of zslc12a10.2 mRNA in a novel group of ionocytes differed from those of the previously-reported H+-ATPase-rich (HR) cells and Na+-K+-ATPase-rich (NaR) cells. Gill mRNA expression of zslc12a10.2 was induced by a low-Cl environment that stimulated fish Cl− influx, while a low-Na environment suppressed this expression. Incubation with metolazone, a specific inhibitor of the NCC, impaired both Na+ and Cl− influx in 5-day postfertilization (dpf) zebrafish embryos. Translational knockdown of zslc12a10.2 with a specific morpholino caused significant decreases in both Cl− influx and Cl− content of 5-dpf zebrafish embryos, suggesting that the operation of zNCC-like 2 results in a net uptake of Cl− in zebrafish. On the contrary, zslc12a10.2 morphants showed increased Na+ influx and content that resulted from upregulation of mRNA expressions of Na+-H+ exchanger 3b and carbonic anhydrase 15a in HR cells. These results for the first time provide in vivo molecular physiological evidence for the possible role of the NCC in the Cl− uptake mechanism in zebrafish skin/gills.


Author(s):  
Sonika Sharma ◽  
Hafeez Ahmad ◽  
Suheel Ahmad Ganai ◽  
Devinder Sharma ◽  
Thanlass Norboo ◽  
...  

2021 ◽  
Author(s):  
Kave Esfandiari ◽  
Mohammad Babaei ◽  
Mina Amiri-Farahani ◽  
Ali Kalantari-Hesari ◽  
Hassan Morovvati

Abstract Kidneys play an important role in regulating the balance of water and ions in freshwater and seawater fish. However, complex kidney structures impair a comprehensive understanding of kidney function. In this study, in addition to renal histology, Na+/K+/ATPase ion transporter proteins and Na+/K+/2Cl− and NHE3 cotransporters were located in Priophthalmus waltoni kidney tissue to evaluate the ion regulation abilities of epithelial cells in various parts of nephrons. The renal tubules are composed of proximal tubules and distal tubules, followed by collecting tubes and finally collecting ducts. Light microscope immunohistochemistry was utilized to locate Na+/ K+-ATPase along renal tubules and collecting ducts. However, the distribution of the Na+/K+-ATPase immune response varies in different sections. Na+/K+/CL− cotransporter positioning was reported only in collecting tubes and collecting ducts, and proximal tubes and distal tubes did not respond to Na+/K+/Cl− cotransporter immunolocalization. Immunohistochemical response for NHE3 localization was detected only at the apex of epithelial cells of proximal tubules and collecting tubes. The distal tubes showed negative reaction and the collecting ducts showed a weak response to NHE3 safety immunolocalization.


2017 ◽  
Vol 108 (4) ◽  
pp. 501-509
Author(s):  
A. Sharifloo ◽  
A. Zibaee ◽  
J. Jalali Sendi ◽  
K. Talebi Jahroumi

AbstractA comprehensive study on digestive trypsin was undertaken in the larval midgut of Pieris brassicae L. Results of enzymatic compartmentalization showed a significantly higher activity of crude trypsin in the anterior larval midgut rather than posterior-midgut. Using Diethylaminoethyl cellulose fast flow column chromatography a purified trypsin was obtained by specific activity of 21 U mg−1 protein, recovery of 22%, purification fold of 28-fold and molecular weight of 25 kDa. This purified enzyme showed the highest activity at pH 8 and the corresponding temperature of 40°C. However, the specific inhibitors used including 4-(2-Aminoethyl) benzenesulfonyl fluroride hydrochloride, N-p-Tosyl-L-lysine methyl ester hydrochloride and Soybean Trypsin Inhibitor significantly lowered the activity of the purified enzyme in vitro. Moreover, the activity of trypsin and likewise the nutritional indices were significantly altered in the larval midgut feeding upon the leaves treated by 1 mM concentration of each inhibitor in comparison with control. Determination of enzymatic characteristics of insect trypsins is crucial in paving the path for controlling pests by potential natural compounds via transgenic plants.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59661 ◽  
Author(s):  
Sven Geiselhardt ◽  
Kinuyo Yoneya ◽  
Beatrice Blenn ◽  
Navina Drechsler ◽  
Jonathan Gershenzon ◽  
...  

2000 ◽  
Vol 66 (12) ◽  
pp. 5174-5181 ◽  
Author(s):  
Daniel J. Lightwood ◽  
David J. Ellar ◽  
Paul Jarrett

ABSTRACT Bacillus thuringiensis protein δ-endotoxins are toxic to a variety of different insect species. Larvicidal potency depends on the completion of a number of steps in the mode of action of the toxin. Here, we investigated the role of proteolytic processing in determining the potency of the B. thuringiensis Cry1Ac δ-endotoxin towards Pieris brassicae (family: Pieridae) andMamestra brassicae (family: Noctuidae). In bioassays, Cry1Ac was over 2,000 times more active against P. brassicae than against M. brassicae larvae. Using gut juice purified from both insects, we processed Cry1Ac to soluble forms that had the same N terminus and the same apparent molecular weight. However, extended proteolysis of Cry1Ac in vitro with proteases from both insects resulted in the formation of an insoluble aggregate. With proteases from P. brassicae, the Cry1Ac-susceptible insect, Cry1Ac was processed to an insoluble product with a molecular mass of ∼56 kDa, whereas proteases from M. brassicae, the non-susceptible insect, generated products with molecular masses of ∼58, ∼40, and ∼20 kDa. N-terminal sequencing of the insoluble products revealed that both insects cleaved Cry1Ac within domain I, butM. brassicae proteases also cleaved the toxin at Arg423 in domain II. A similar pattern of processing was observed in vivo. When Arg423 was replaced with Gln or Ser, the resulting mutant toxins resisted degradation by M. brassicae proteases. However, this mutation had little effect on toxicity to M. brassicae. Differential processing of membrane-bound Cry1Ac was also observed in qualitative binding experiments performed with brush border membrane vesicles from the two insects and in midguts isolated from toxin-treated insects.


2005 ◽  
Vol 288 (5) ◽  
pp. R1385-R1395 ◽  
Author(s):  
Brian S. Shepherd ◽  
Katherine Drennon ◽  
Jaime Johnson ◽  
Joel W. Nichols ◽  
Richard C. Playle ◽  
...  

In this study, we set out to examine the role of the somatotropic axis in the ion-regulation process in rainbow trout. Specifically, our objective was to examine whether plasma insulin-like growth factor-binding proteins (IGFBPs) are modulated by gradual salinity exposure. To this end, freshwater (FW)-adapted rainbow trout were subjected to gradual salinity increases, up to 66% seawater, over a period of 5 days. During this acclimation process, minimal elevations in plasma Ca2+ and Cl− were seen in the salinity-acclimated groups compared with FW controls. There were no changes in plasma Na+ levels, and only a minor transient change in plasma cortisol levels was seen with salinity exposure. The salinity challenged animals responded with elevations in plasma growth hormone (GH) and IGF-I levels and gill Na+-K+-ATPase activity. We identified IGFBPs of 21, 32, 42, and 50 kDa in size in the plasma of these animals, and they were consistently higher with salinity. Despite the overall increase in IGFBPs with salinity, transient changes in individual BPs over the 5-day period were noted in the FW and salinity-exposed fish. Specifically, the transient changes in plasma levels of the 21-, 42-, and 50-kDa IGFBPs were different between the FW and salinity groups, while the 32-kDa IGFBP showed a similar trend (increases with sampling time) in both groups. Considered together, the elevated plasma IGFBPs suggest a key role for these binding proteins in the regulation of IGF-I during salinity acclimation in salmonids.


1990 ◽  
Vol 270 (1) ◽  
pp. 133-136 ◽  
Author(s):  
N Crickmore ◽  
C Nicholls ◽  
D J Earp ◽  
T C Hodgman ◽  
D J Ellar

Using our recently reported method of electroporation to transform Bacillus thuringiensis [Bone & Ellar (1989) FEMS Microbiol. Lett. 58, 171-178], cloned B. thuringiensis entomocidal delta-endotoxin genes have been introduced into several native B. thuringiensis strains. In many cases the resulting transformants expressed both their native toxins and the cloned toxin, producing strains with broader toxicity spectra. The introduction of the var. tenebrionis toxin gene into B. thuringiensis var. israelensis resulted in a strain with activity against Pieris brassicae (cabbage white butterfly), an activity which neither parent strain possesses. We discuss further the possibility of synergism and also the problems associated with introducing cloned DNA by this method.


2006 ◽  
Vol 56 (2) ◽  
pp. 157-172 ◽  
Author(s):  
Renate Smallegange ◽  
Tjarda Everaarts ◽  
Joop Van Loon

AbstractThe landing response of the large cabbage white butterfly Pieris brassicae was studied under controlled optical and gustatory stimulus conditions. Experience-based changes in landing behaviour were examined by offering cardboard circles of two different shades of green, treated with either an oviposition stimulant or a deterrent. We employed two training situations. In one situation the two shades of green, carrying either the stimulant or the deterrent, were offered simultaneously, in the other sequentially. During the 1 hour training periods, butterflies were either landing and drumming spontaneously or they were caught at the end of the period and placed on the artificial leaves until tarsal drumming ensued. Our experiments demonstrated that P. brassicae females can learn to associate visually detected substrate characteristics with contact-chemosensory information available only after landing. Furthermore, a learned preference for a substrate could be turned into a preference for the alternative substrate by exposing the insect to a deterrent on the previously preferred substrate. These results provide indications of aversion learning, thus far undocumented in oviposition behaviour of Lepidoptera. Bringing the butterflies into forced contact with the oviposition stimulant resulted in similar effects on landing preference compared to those of spontaneous landing, but spontaneous landing had a stronger effect on preference for associations involving the deterrent. The simultaneous training regime, which supposedly requires a less important role for short-term memory, was more effective in modifying landing preferences.


Sign in / Sign up

Export Citation Format

Share Document