somatotropic axis
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 33)

H-INDEX

35
(FIVE YEARS 2)

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Ilse Vanhorebeek ◽  
Inge Derese ◽  
Jan Gunst ◽  
Pieter J. Wouters ◽  
Greet Hermans ◽  
...  

Abstract Background Critical illness is hallmarked by neuroendocrine alterations throughout ICU stay. We investigated whether the neuroendocrine axes recover after ICU discharge and whether any residual abnormalities associate with physical functional impairments assessed 5 years after critical illness. Methods In this preplanned secondary analysis of the EPaNIC randomized controlled trial, we compared serum concentrations of hormones and binding proteins of the thyroid axis, the somatotropic axis and the adrenal axis in 436 adult patients who participated in the prospective 5-year clinical follow-up and who provided a blood sample with those in 50 demographically matched controls. We investigated independent associations between any long-term hormonal abnormalities and physical functional impairments (handgrip strength, 6-min walk distance, and physical health-related quality-of-life) with use of multivariable linear regression analyses. Results At 5-year follow-up, patients and controls had comparable serum concentrations of thyroid-stimulating hormone, thyroxine (T4), triiodothyronine (T3) and thyroxine-binding globulin, whereas patients had higher reverse T3 (rT3, p = 0.0002) and lower T3/rT3 (p = 0.0012) than controls. Patients had comparable concentrations of growth hormone, insulin-like growth factor-I (IGF-I) and IGF-binding protein 1 (IGFBP1), but higher IGFBP3 (p = 0.030) than controls. Total and free cortisol, cortisol-binding globulin and albumin concentrations were comparable for patients and controls. A lower T3/rT3 was independently associated with lower handgrip strength and shorter 6-min walk distance (p ≤ 0.036), and a higher IGFBP3 was independently associated with higher handgrip strength (p = 0.031). Conclusions Five years after ICU admission, most hormones and binding proteins of the thyroid, somatotropic and adrenal axes had recovered. The residual long-term abnormality within the thyroid axis was identified as risk factor for long-term physical impairment, whereas that within the somatotropic axis may be a compensatory protective response. Whether targeting of the residual abnormality in the thyroid axis may improve long-term physical outcome of the patients remains to be investigated. Trial registration ClinicalTrials.gov: NCT00512122, registered on July 31, 2007 (https://www.clinicaltrials.gov/ct2/show/NCT00512122). Graphical Abstract


Genomics ◽  
2021 ◽  
Author(s):  
Ioannis Konstantinidis ◽  
Dafni Anastasiadi ◽  
Pål Sætrom ◽  
Artem V. Nedoluzhko ◽  
Robin Mjelle ◽  
...  

2021 ◽  
Vol 10 (10) ◽  
pp. 2075
Author(s):  
Weronika Wasyluk ◽  
Martyna Wasyluk ◽  
Agnieszka Zwolak

Sepsis is defined as “life-threatening organ dysfunction caused by a dysregulated host response to infection”. One of the elements of dysregulated host response is an endocrine system disorder. Changes in its functioning in the course of sepsis affect almost all hormonal axes. In sepsis, a function disturbance of the hypothalamic–pituitary–adrenal axis has been described, in the range of which the most important seems to be hypercortisolemia in the acute phase. Imbalance in the hypothalamic–pituitary–thyroid axis is also described. The most typical manifestation is a triiodothyronine concentration decrease and reverse triiodothyronine concentration increase. In the somatotropic axis, a change in the secretion pattern of growth hormone and peripheral resistance to this hormone has been described. In the hypothalamic–pituitary–gonadal axis, the reduction in testosterone concentration in men and the stress-induced “hypothalamic amenorrhea” in women have been described. Catecholamine and β-adrenergic stimulation disorders have also been reported. Disorders in the endocrine system are part of the “dysregulated host response to infection”. They may also affect other components of this dysregulated response, such as metabolism. Hormonal changes occurring in the course of sepsis require further research, not only in order to explore their potential significance in therapy, but also due to their promising prognostic value.


2021 ◽  
pp. 101229
Author(s):  
L. Dishon ◽  
N Avital-Cohen ◽  
S Zaguri ◽  
J Bartman ◽  
R Heiblum ◽  
...  
Keyword(s):  
In Ovo ◽  

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 228
Author(s):  
Gad Degani ◽  
Isana Veksler-Lublinsky ◽  
Ari Meerson

Markers of genetic variation between species are important for both applied and basic research. Here, various genes of the blue gourami (Trichogaster trichopterus, suborder Anabantoidei, a model labyrinth fish), many of them involved in growth and reproduction, are reviewed as markers of genetic variation. The genes encoding the following hormones are described: kisspeptins 1 and 2, gonadotropin-releasing hormones 1, 2, and 3, growth hormone, somatolactin, prolactin, follicle- stimulating hormone and luteinizing hormone, as well as mitochondrial genes encoding cytochrome b and 12S rRNA. Genetic markers in blue gourami, representing the suborder Anabantoidei, differ from those in other bony fishes. The sequence of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene of blue gourami is often used to study the Anabantoidei suborder. Among the genes involved in controlling growth and reproduction, the most suitable genetic markers for distinguishing between species of the Anabantoidei have functions in the hypothalamic–pituitary–somatotropic axis: pituitary adenylate cyclase-activating polypeptide and growth hormone, and the 12S rRNA gene.


Endocrinology ◽  
2021 ◽  
Author(s):  
John-Olov Jansson ◽  
Adria Dalmau Gasull ◽  
Erik Schéle ◽  
Suzanne L Dickson ◽  
Vilborg Palsdottir ◽  
...  

Abstract In healthy conditions, prepubertal growth follows an individual specific growth channel. Growth hormone (GH) is undoubtedly the major regulator of growth. However, the homeostatic regulation to maintain the individual specific growth channel during growth is unclear. We recently hypothesized a body weight sensing homeostatic regulation of body weight during adulthood, the gravitostat. We now investigated if sensing of body weight also contributes to the strict homeostatic regulation to maintain the individual specific growth channel during prepubertal growth. To evaluate the effect of increased artificial loading on prepubertal growth, we implanted heavy (20% of body weight) or light (2% of the body weight) capsules into the abdomen of 26-day old male rats. The body growth, as determined by change in biological body weight and growth of the long bones and the axial skeleton, was reduced in rats bearing a heavy load compared to light load. Removal of the increased load resulted in a catch-up growth and a normalization of body weight. Loading decreased hypothalamic growth hormone releasing hormone mRNA, liver IGF-1 mRNA and serum IGF-1, suggesting that the reduced body growth was caused by a negative feed-back regulation on the somatotropic-axis and this notion was supported by the fact that increased loading did not reduce body growth in GH-treated rats. Based on these data, we propose the gravitostat hypothesis for the regulation of prepubertal growth. This states that there is a homeostatic regulation to maintain the individual specific growth channel via body weight sensing, regulating the somatotropic axis and explaining catch-up growth.


Sign in / Sign up

Export Citation Format

Share Document