Phosphorus-31 NMR spectroscopy in stereochemical analysis. Organic compounds and metal complexes

1991 ◽  
Vol 94 (1) ◽  
pp. 219-220
Author(s):  
W.S.B
Author(s):  
Majid Ali ◽  
Syed Majid Bukhari ◽  
Asma Zaidi ◽  
Farhan A. Khan ◽  
Umer Rashid ◽  
...  

Background:: Structurally diverse organic compounds and available drugs were screened against urease and carbonic anhydrase II in a formulation acceptable for high-throughput screening. Objective: The study was conducted to find out potential inhibitors of urease and carbonic anhydrase II. Methods:: Quantification of the possible HITs was carried out by determining their IC50 values. Results and Discussion:: of several screened compounds including derivatives of oxadiazole, coumarins, chromane-2, 4- diones and metal complexes of cysteine-omeprazole showed promising inhibitory activities with IC50 ranging from 47 μM to 412 μM against the urease. The interactions of active compounds with active sites of enzymes were investigated through molecular docking studies which revealed that (R)-1-(4-amino-4-(5-(thiophen-2-yl)-1,3,4-oxadiazol-2-yl) butyl) guanidine possessing IC50 of 47 μM, interacts with one of the nickel metal atom of urease besides further interactions as predictable hydrogen bonds with KCX490, Asp633, His492, His407 and His409 along with Ala440 and 636. Bi-ligand metal complexes of 4-aminoantipyrine based Schiff bases showed activation of urease with AC50 ranging from 68 μM to 112 μM. Almost 21 compounds with varying functional groups including pyrimidines, oxadiazoles, imidazoles, hydrazides and tin based compounds were active carbonic anhydrase II inhibitors presenting 98 μM to 390 μM IC50 values. Several N-substituted sulfonamide derivatives were inactive against carbonic anhydrase II. Conclusion:: Among all the screened compounds, highly active inhibitor of carbonic anhydrase II was (4-(3- hydroxyphenyl)-6-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)phenyl) methanone with IC50 of 98.0 μM. This particular compound showed metallic interaction with Zn ion of carbonic anhydrase II through hydroxyl group of phenyl ring.


ChemInform ◽  
2007 ◽  
Vol 38 (50) ◽  
Author(s):  
Giuseppe Bifulco ◽  
Paolo Dambruoso ◽  
Luigi Gomez-Paloma ◽  
Raffaele Riccio

Inorganics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 72
Author(s):  
Dafydd D. L. Jones ◽  
Samuel Watts ◽  
Cameron Jones

Sterically bulky β-diketiminate (or Nacnac) ligand systems have recently shown the ability to kinetically stabilize highly reactive low-oxidation state main group complexes. Metal halide precursors to such systems can be formed via salt metathesis reactions involving alkali metal complexes of these large ligand frameworks. Herein, we report the synthesis and characterization of lithium and potassium complexes of the super bulky anionic β-diketiminate ligands, known [TCHPNacnac]− and new [TCHP/DipNacnac]− (ArNacnac = [(ArNCMe)2CH]−) (Ar = 2,4,6-tricyclohexylphenyl (TCHP) or 2,6-diisopropylphenyl (Dip)). The reaction of the proteo-ligands, ArNacnacH, with nBuLi give the lithium etherate compounds, [(TCHPNacnac)Li(OEt2)] and [(TCHP/DipNacnac)Li(OEt2)], which were isolated and characterized by multinuclear NMR spectroscopy and X-ray crystallography. The unsolvated potassium salts, [{K(TCHPNacnac)}2] and [{K(TCHP/DipNacnac)}∞], were also synthesized and characterized in solution by NMR spectroscopy. In the solid state, these highly reactive potassium complexes exhibit differing alkali metal coordination modes, depending on the ligand involved. These group 1 complexes have potential as reagents for the transfer of the bulky ligand fragments to metal halides, and for the subsequent stabilization of low-oxidation state metal complexes.


Sign in / Sign up

Export Citation Format

Share Document