Effects of inhibition of protein synthesis on DNA replication in cultured mammalian cells

1977 ◽  
Vol 115 (3) ◽  
pp. 485-511 ◽  
Author(s):  
Eva Stimac ◽  
David Housman ◽  
Joel A. Huberman
1975 ◽  
Vol 67 (3) ◽  
pp. 761-773 ◽  
Author(s):  
R Hand

The effects of inhibition of protein synthesis by the antibiotics cycloheximide and puromycin on the initiation of DNA replication in mouse L cells were studied. Cellular DNA was pulse labeled with [3H]thymidine of high, then of low specific activity and prepared for fiber autoradiography. Autoradiograms containing multiple (up to four) replication units were analyzed. In control cells, the proportion of replication units that initiated during a 10-min, high specific activity pulse was approximately equal to the proportion initiating immediately before the pulse. The addition of cycloheximide or puromycin at the start of the pulse inhibited the frequency of initiation in that there was a decrease by up to one-third of units initiating during the pulse relative to controls. Replication direction was also altered. Addition of the antibiotics 2 h before the pulse reduced the proportion of bidirectional units observed from 0.98 to 0.70. Antibiotic treatment for 2 h also decreased initiation synchrony in that the proportion of multiunit autoradiograms on which neighboring units showed similar replication patterns (indicating temporally coordinated initiation) was reduced by one-half. These observations indicate that inhibition of protein synthesis alters the normal pattern of DNA initiation.


2006 ◽  
Vol 50 (1) ◽  
pp. 362-364 ◽  
Author(s):  
Xilin Zhao ◽  
Muhammad Malik ◽  
Nymph Chan ◽  
Alex Drlica-Wagner ◽  
Jian-Ying Wang ◽  
...  

ABSTRACT Inhibition of DNA replication in an Escherichia coli dnaB-22 mutant failed to block quinolone-mediated lethality. Inhibition of protein synthesis by chloramphenicol inhibited nalidixic acid lethality and, to a lesser extent, ciprofloxacin lethality in both dnaB-22 and wild-type cells. Thus, major features of quinolone-mediated lethality do not depend on ongoing replication.


1993 ◽  
Vol 289 (1) ◽  
pp. 71-79 ◽  
Author(s):  
W L Wong ◽  
M A Brostrom ◽  
G Kuznetsov ◽  
D Gmitter-Yellen ◽  
C O Brostrom

Thapsigargin, a tumour-promoting sesquiterpene lactone, selectively inhibits the Ca(2+)-ATPase responsible for Ca2+ accumulation by the endoplasmic reticulum (ER). Mobilization of ER-sequestered Ca2+ to the cytosol and to the extracellular fluid subsequently ensues, with concomitant alteration of cellular functions. Thapsigargin was found to serve as a rapid, potent and efficacious inhibitor of amino acid incorporation in cultured mammalian cells. At concentrations mobilizing cell-associated Ca2+ to the extracellular fluid, thapsigargin provoked extensive inhibition of protein synthesis within 10 min. The inhibition in GH3 pituitary cells involved the synthesis of almost all polypeptides, was not associated with increased cytosolic free Ca2+ concentration ([Ca2+]i), and was not reversed at high extracellular Ca2+. The transient rise in [Ca2+]i triggered by ionomycin was diminished by thapsigargin. Polysomes failed to accumulate in the presence of the drug, indicative of impaired translational initiation. With longer (1-3 h) exposures to thapsigargin, recovery of translational activity was observed accompanied by increased synthesis of the ER protein glucose-regulated stress protein 78 or immunoglobulin heavy-chain binding protein (‘GRP78/BiP’) and its mRNA. Such inductions were comparable with those observed previously with Ca2+ ionophores which mobilize the cation from all intracellular sequestered sites. Actin mRNA concentrations declined significantly during such treatments. In HepG2 cells processing and secretion of the glycoprotein alpha 1-antitrypsin were rapidly suppressed by thapsigargin. Ca2+ sequestered specifically by the ER is concluded to be essential for optimal protein synthesis and processing. These rapid effects of thapsigargin on mRNA translation, protein processing and gene expression should be considered when evaluating potential mechanisms by which this tumour promoter influences cellular events.


Sign in / Sign up

Export Citation Format

Share Document