scholarly journals Lethal Action of Quinolones against a Temperature-Sensitive dnaB Replication Mutant of Escherichia coli

2006 ◽  
Vol 50 (1) ◽  
pp. 362-364 ◽  
Author(s):  
Xilin Zhao ◽  
Muhammad Malik ◽  
Nymph Chan ◽  
Alex Drlica-Wagner ◽  
Jian-Ying Wang ◽  
...  

ABSTRACT Inhibition of DNA replication in an Escherichia coli dnaB-22 mutant failed to block quinolone-mediated lethality. Inhibition of protein synthesis by chloramphenicol inhibited nalidixic acid lethality and, to a lesser extent, ciprofloxacin lethality in both dnaB-22 and wild-type cells. Thus, major features of quinolone-mediated lethality do not depend on ongoing replication.

Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Steven J Sandler ◽  
Hardeep S Samra ◽  
Alvin J Clark

Abstract First identified as an essential component of the ϕX174 in vitro DNA replication system, PriA has ATPase, helicase, translocase, and primosome-assembly activities. priA1::kan strains of Escherichia coli are sensitive to UV irradiation, deficient in homologous recombination following transduction, and filamentous. priA2::kan strains have eightfold higher levels of uninduced SOS expression than wild type. We show that (1) priA1::kan strains have eightfold higher levels of uninduced SOS expression, (2) priA2::kan strains are UVS and Rec−, (3) lexA3 suppresses the high basal levels of SOS expression of a priA2::kan strain, and (4) plasmid-encoded priA300 (K230R), a mutant allele retaining only the primosome-assembly activity of priA+, restores both UVR and Rec+ phenotypes to a priA2::kan strain. Finally, we have isolated 17 independent UVR Rec+ revertants of priA2::kan strains that carry extragenic suppressors. All 17 map in the C-terminal half of the dnaC gene. DnaC loads the DnaB helicase onto DNA as a prelude for primosome assembly and DNA replication. We conclude that priA's primosome-assembly activity is essential for DNA repair and recombination and that the dnaC suppressor mutations allow these processes to occur in the absence of priA.


Genetics ◽  
1979 ◽  
Vol 91 (2) ◽  
pp. 215-227
Author(s):  
W Scott Champney

ABSTRACT Two variations of the method of localized mutagenesis were used to introduce mutations into the 72 min region of the Escherichia coli chromosome. Twenty temperature-sensitive mutants, with linkage to markers in this region, have been examined. Each strain showed an inhibition of growth in liquid medium at 44°, and 19 of the mutants lost viability upon prolonged incubation at this temperature. A reduction in the rate of in vivo RNA and protein synthesis was observed for each mutant at 44°, relative to a control strain. Eleven of the mutants were altered in growth sensitivity or resistance to one or more of three ribosomal antibiotics. The incomplete assembly of ribosomal subunits was detected in nine strains grown at 44°. The characteristics of these mutants suggest that many of them are altered in genes for translational or transcriptional components, consistent with the clustering of these genes at this chromosomal locus.


Genetics ◽  
1995 ◽  
Vol 139 (4) ◽  
pp. 1483-1494 ◽  
Author(s):  
Y Cao ◽  
T Kogoma

Abstract The mechanism of recA polA lethality in Escherichia coli has been studied. Complementation tests have indicated that both the 5'-->3' exonuclease and the polymerization activities of DNA polymerase I are essential for viability in the absence of RecA protein, whereas the viability and DNA replication of DNA polymerase I-defective cells depend on the recombinase activity of RecA. An alkaline sucrose gradient sedimentation analysis has indicated that RecA has only a minor role in Okazaki fragment processing. Double-strand break repair is proposed for the major role of RecA in the absence of DNA polymerase I. The lexA(Def)::Tn5 mutation has previously been shown to suppress the temperature-sensitive growth of recA200(Ts) polA25::spc mutants. The lexA(Def) mutation can alleviate impaired DNA synthesis in the recA200(Ts) polA25::spc mutant cells at the restrictive temperature. recF+ is essential for this suppression pathway. recJ and recQ mutations have minor but significant adverse effects on the suppression. The recA200(Ts) allele in the recA200(Ts) polA25::spc lexA(Def) mutant can be replaced by delta recA, indicating that the lexA(Def)-induced suppression is RecA independent. lexA(Def) reduces the sensitivity of delta recA polA25::spc cells to UV damage by approximately 10(4)-fold. lexA(Def) also restores P1 transduction proficiency to the delta recA polA25::spc mutant to a level that is 7.3% of the recA+ wild type. These results suggest that lexA(Def) activates a RecA-independent, RecF-dependent recombination repair pathway that suppresses the defect in DNA replication in recA polA double mutants.


Amino Acids ◽  
2019 ◽  
Vol 51 (10-12) ◽  
pp. 1577-1592 ◽  
Author(s):  
Galina V. Smirnova ◽  
Aleksey V. Tyulenev ◽  
Kseniya V. Bezmaternykh ◽  
Nadezda G. Muzyka ◽  
Vadim Y. Ushakov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document