A photophysical study of the sol/gel transition in silica: Structural dynamics and oscillations, room-temperature phosphorescence and photochromic gel glasses

1986 ◽  
Vol 82 (1-3) ◽  
pp. 103-109 ◽  
Author(s):  
Vered R. Kaufman ◽  
David Levy ◽  
David Avnir
Author(s):  
Amirhossein Bakhtiiari ◽  
Rezvan Khorshidi ◽  
Fatemeh Yazdian ◽  
Hamid Rashedi ◽  
Meisam Omidi

In recent decades, three dimensional (3D) bio-printing technology has found widespread use in tissue engineering applications. The aim of this study is to scrutinize different parameters of the bioprinter – with the help of simulation software – to print a hydrogel so much so that avoid high amounts of shear stress which is detrimental for cell viability and cell proliferation. Rheology analysis was done on several hydrogels composed of different percentages of components: alginate, collagen, and gelatin. The results have led to the combination of percentages collagen:alginate:gelatin (1:4:8)% as the best condition which makes sol-gel transition at room temperature possible. The results have shown the highest diffusion rate and cell viability for the cross-linked sample with 1.5% CaCl2 for the duration of 1 h. Finally, we have succeeded in printing the hydrogel that is mechanically strong with suitable degradation rate and cell viability.


1994 ◽  
Vol 91 ◽  
pp. 901-908 ◽  
Author(s):  
H Zanni ◽  
P Nieto ◽  
L Fernandez ◽  
R Couty ◽  
P Barret ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Emanuele Mauri ◽  
Sara Maria Giannitelli ◽  
Marcella Trombetta ◽  
Alberto Rainer

Nanogels represent an innovative platform for tunable drug release and targeted therapy in several biomedical applications, ranging from cancer to neurological disorders. The design of these nanocarriers is a pivotal topic investigated by the researchers over the years, with the aim to optimize the procedures and provide advanced nanomaterials. Chemical reactions, physical interactions and the developments of engineered devices are the three main areas explored to overcome the shortcomings of the traditional nanofabrication approaches. This review proposes a focus on the current techniques used in nanogel design, highlighting the upgrades in physico-chemical methodologies, microfluidics and 3D printing. Polymers and biomolecules can be combined to produce ad hoc nanonetworks according to the final curative aims, preserving the criteria of biocompatibility and biodegradability. Controlled polymerization, interfacial reactions, sol-gel transition, manipulation of the fluids at the nanoscale, lab-on-a-chip technology and 3D printing are the leading strategies to lean on in the next future and offer new solutions to the critical healthcare scenarios.


Langmuir ◽  
2021 ◽  
Author(s):  
Lucas S. Ribeiro ◽  
Renata L. Sala ◽  
Leticia A. O. de Jesus ◽  
Sandra A. Cruz ◽  
Emerson R. Camargo

Sign in / Sign up

Export Citation Format

Share Document