Small angle X-ray scattering and infrared spectroscopy study of sputtered a-Ge:H

1993 ◽  
Vol 164-166 ◽  
pp. 155-158 ◽  
Author(s):  
M. Mulato ◽  
I.L. Torriani ◽  
I. Chambouleyron
2021 ◽  
pp. 000370282110282
Author(s):  
Daitaro Ishikawa ◽  
Jiamin Yang ◽  
Tomoyuki Fujii

The purpose of this study was to understand the ordered structure of starch in rice flour based on a physical modification with non-heating, milling, and water sorption through the structural evaluation of rice flour using small-angle X-ray scattering (SAXS) and infrared spectroscopy within the 4000–100 cm−1 region. The SAXS pattern of the samples with low moisture contents subjected to milling yield a band within the 0.4–0.9 nm−1 of the q range owing to a lamellar repeat of starch with an ordered structure in rice flour. We proposed an order parameter using the intensity of the SAXS band to quantify the order structure of starch in rice flour, and the true density was negatively correlated with the order parameter. Infrared band at 990 cm−1 in COH bending mode applied to the hydroxyl group of C6 shifted to a low wavenumber corresponding to the order parameter. A linear correlation was found between the order parameter and the 990 cm−1 and band at 861 cm−1 owing to COC symmetrical stretching of glycoside bond and CH2 deformation of the glucose unit of starch, 572, 472, and 436 cm−1, owing to the pyranose ring in the glucose unit of starch. The identified infrared bands are effective for quantifying the ordered structure of starch at the lamellar level. When subjected to water sorption, the band position at 990 cm−1 shifted to a higher wavenumber above a water activity of 0.7. This result revealed that the water-induced transition of glass to rubber of starch in rice flour can be clearly evaluated through infrared spectroscopy using the band at 990 cm−1. In addition, the band at 861 cm−1 also shifted to a higher wavenumber, whereas those at 572 and 436 cm−1 did not show a significant shift. These results indicate that water sorption slightly affects the internal structure and may mainly affect the surface of starch.


2019 ◽  
Author(s):  
Christian Prehal ◽  
Aleksej Samojlov ◽  
Manfred Nachtnebel ◽  
Manfred Kriechbaum ◽  
Heinz Amenitsch ◽  
...  

<b>Here we use in situ small and wide angle X-ray scattering to elucidate unexpected mechanistic insights of the O2 reduction mechanism in Li-O2 batteries.<br></b>


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


1981 ◽  
Vol 46 (7) ◽  
pp. 1675-1681 ◽  
Author(s):  
Josef Baldrian ◽  
Božena N. Kolarz ◽  
Henrik Galina

Porosity variations induced by swelling agent exchange were studied in a styrene-divinylbenzene copolymer. Standard methods were used in the characterization of copolymer porosity in the dry state and the results were compared with related structural parameters derived from small angle X-ray scattering (SAXS) measurements as developed for the characterization of two-phase systems. The SAXS method was also used for porosity determination in swollen samples. The differences in the porosity of dry samples were found to be an effect of the drying process, while in the swollen state the sample swells and deswells isotropically.


Sign in / Sign up

Export Citation Format

Share Document