The optical path length approach to radiation heat transfer with isotropic scattering and gaseous absorption

Author(s):  
R.O. Buckius ◽  
A. Fernandez-Fraga
Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3986 ◽  
Author(s):  
Ali Ettaleb ◽  
Mohamed Abbassi ◽  
Habib Farhat ◽  
Kamel Guedri ◽  
Ahmed Omri ◽  
...  

This study aims to numerically investigate the radiation heat transfer in a complex, 3-D biomass pyrolysis reactor which is consisted of two pyrolysis chambers and a heat recuperator. The medium assumes to be gray, absorbs, emits, and Mie-anisotropically scatters the radiation energy. The finite volume method (FVM) is applied to solve the radiation transfer equation (RTE) using the step scheme. To treat the complex geometry, the blocked-off-region procedure is employed. Mie equations (ME) are applied to evaluate the scattering phase function and analyze the angular distribution of the anisotropically scattered radiation by particles. In this study, three different states are considered to test the anisotropic scattering impacts on the temperature and radiation heat flux distribution. These states are as: (i) Isotropic scattering, (ii) forward and backward scattering and (iii) scattering with solid particles of different coals and fly ash. The outcomes demonstrate that the radiation heat flux enhances by an increment of the albedo and absorption coefficients for the coals and fly ash, unlike the isotropic case and the forward and backward scattering functions. Moreover, the particle size parameter does not have an important influence on the radiation heat flux, when the medium is thin optical. Its effect is more noticeable for higher extinction coefficients.


2019 ◽  
Vol 30 (4) ◽  
pp. 1815-1837
Author(s):  
Mehdi Zare ◽  
Sadegh Sadeghi

Purpose This study aims to perform a comprehensive investigation to model the thermal characteristics of a coupled conduction-radiation heat transfer in a two-dimensional irregular enclosure including a triangular-shaped heat source. Design/methodology/approach For this purpose, a promising hybrid technique based on the concepts of blocked-off method, FVM and DOM is developed. The enclosure consists of several horizontal, vertical and oblique walls, and thermal conductivity within the enclosure varies directly with temperature and indirectly with position. To simplify the complex geometry, a promising mathematical model is introduced using blocked-off method. Emitting, absorbing and non-isotropic scattering gray are assumed as the main radiative characteristics of the steady medium. Findings DOM and FVM are, respectively, applied for solving radiative transfer equation (RTE) and the energy equation, which includes conduction, radiation and heat source terms. The temperature and heat flux distributions are calculated inside the enclosure. For validation, results are compared with previous data reported in the literature under the same conditions. Results and comparisons show that this approach is highly efficient and reliable for complex geometries with coupled conduction-radiation heat transfer. Finally, the effects of thermo-radiative parameters including surface emissivity, extinction coefficient, scattering albedo, asymmetry factor and conduction-radiation parameter on temperature and heat flux distributions are studied. Originality/value In this paper, a hybrid numerical method is used to analyze coupled conduction-radiation heat transfer in an irregular geometry. Varying thermal conductivity is included in this analysis. By applying the method, results obtained for temperature and heat flux distributions are presented and also validated by the data provided by several previous papers.


1982 ◽  
Vol 104 (1) ◽  
pp. 68-75 ◽  
Author(s):  
H. Lee ◽  
R. O. Buckius

Radiation heat transfer in a planar participating medium which scatters anisotropically is scaled to an isotropically scattering medium. Only isotropic scattering problems need to be solved with a scaled optical depth and albedo. The scaling is derived from approximate solution methods to the equation of transfer. From the P-1 approximation, the two-flux method, and the modified linear anisotropic scattering model, three scalings are derived. The scaling that gives the best results when comparing the scaled solutions to exact solutions is the one derived from the P-1 approximation.


2000 ◽  
Vol 627 ◽  
Author(s):  
Gabriel Popescu ◽  
Aristide Dogariu

ABSTRACTIn many industrial applications involving granular media, knowledge about the structural transformations suffered during the industrial process is desirable. Optical techniques are noninvasive, fast, and versatile tools for monitoring such transformations. We have recently introduced optical path-length spectroscopy as a new technique for random media investigation. The principle of the method is to use a partially coherent source in a Michelson interferometer, where the fields from a reference mirror and the sample are combined to obtain an interference signal. When the system under investigation is a multiple-scattering medium, by tuning the optical length of the reference arm, the optical path-length probability density of light backscattered from the sample is obtained. This distribution carries information about the structural details of the medium. In the present paper, we apply the technique of optical path-length spectroscopy to investigate inhomogeneous distributions of particulate dielectrics such as ceramics and powders. The experiments are performed on suspensions of systems with different solid loads, as well as on powders and suspensions of particles with different sizes. We show that the methodology is highly sensitive to changes in volume concentration and particle size and, therefore, it can be successfully used for real-time monitoring. In addition, the technique is fiber optic-based and has all the advantages associated with the inherent versatility.


Sign in / Sign up

Export Citation Format

Share Document