The chromosome inversion problem

1982 ◽  
Vol 99 (1) ◽  
pp. 1-7 ◽  
Author(s):  
G.A. Watterson ◽  
W.J. Ewens ◽  
T.E. Hall ◽  
A. Morgan
2017 ◽  
Author(s):  
Phillip Fuller ◽  
Henry Thomas
Keyword(s):  

2016 ◽  
Vol 46 (1) ◽  
pp. 125-139 ◽  
Author(s):  
Cesar B. Rocha ◽  
William R. Young ◽  
Ian Grooms

AbstractThis study investigates the representation of solutions of the three-dimensional quasigeostrophic (QG) equations using Galerkin series with standard vertical modes, with particular attention to the incorporation of active surface buoyancy dynamics. This study extends two existing Galerkin approaches (A and B) and develops a new Galerkin approximation (C). Approximation A, due to Flierl, represents the streamfunction as a truncated Galerkin series and defines the potential vorticity (PV) that satisfies the inversion problem exactly. Approximation B, due to Tulloch and Smith, represents the PV as a truncated Galerkin series and calculates the streamfunction that satisfies the inversion problem exactly. Approximation C, the true Galerkin approximation for the QG equations, represents both streamfunction and PV as truncated Galerkin series but does not satisfy the inversion equation exactly. The three approximations are fundamentally different unless the boundaries are isopycnal surfaces. The authors discuss the advantages and limitations of approximations A, B, and C in terms of mathematical rigor and conservation laws and illustrate their relative efficiency by solving linear stability problems with nonzero surface buoyancy. With moderate number of modes, B and C have superior accuracy than A at high wavenumbers. Because B lacks the conservation of energy, this study recommends approximation C for constructing solutions to the surface active QG equations using the Galerkin series with standard vertical modes.


2017 ◽  
Vol 10 (6) ◽  
pp. 2201-2219 ◽  
Author(s):  
Yosuke Niwa ◽  
Yosuke Fujii ◽  
Yousuke Sawa ◽  
Yosuke Iida ◽  
Akihiko Ito ◽  
...  

Abstract. A four-dimensional variational method (4D-Var) is a popular technique for source/sink inversions of atmospheric constituents, but it is not without problems. Using an icosahedral grid transport model and the 4D-Var method, a new atmospheric greenhouse gas (GHG) inversion system has been developed. The system combines offline forward and adjoint models with a quasi-Newton optimization scheme. The new approach is then used to conduct identical twin experiments to investigate optimal system settings for an atmospheric CO2 inversion problem, and to demonstrate the validity of the new inversion system. In this paper, the inversion problem is simplified by assuming the prior flux errors to be reasonably well known and by designing the prior error correlations with a simple function as a first step. It is found that a system of forward and adjoint models with smaller model errors but with nonlinearity has comparable optimization performance to that of another system that conserves linearity with an exact adjoint relationship. Furthermore, the effectiveness of the prior error correlations is demonstrated, as the global error is reduced by about 15 % by adding prior error correlations that are simply designed when 65 weekly flask sampling observations at ground-based stations are used. With the optimal setting, the new inversion system successfully reproduces the spatiotemporal variations of the surface fluxes, from regional (such as biomass burning) to global scales. The optimization algorithm introduced in the new system does not require decomposition of a matrix that establishes the correlation among the prior flux errors. This enables us to design the prior error covariance matrix more freely.


Author(s):  
Kit Man Cham ◽  
Soo-Young Oh ◽  
Daeje Chin ◽  
John L. Moll

Genetics ◽  
1986 ◽  
Vol 114 (4) ◽  
pp. 1165-1190
Author(s):  
Charles F Aquadro ◽  
Susan F Desse ◽  
Molly M Bland ◽  
Charles H Langley ◽  
Cathy C Laurie-Ahlberg

ABSTRACT Variation in the DNA restriction map of a 13-kb region of chromosome ll including the alcohol dehydrogenase structural gene (Adh) was examined in Drosophila melanogaster from natural populations. Detailed analysis of 48 D. melanogaster lines representing four eastern United States populations revealed extensive DNA sequence variation due to base substitutions, insertions and deletions. Cloning of this region from several lines allowed characterization of length variation as due to unique sequence insertions or deletions [nine sizes; 21-200 base pairs (bp)] or transposable element insertions (several sizes, 340 bp to 10.2 kb, representing four different elements). Despite this extensive variation in sequences flanking the Adh gene, only one length polymorphism is clearly associated with altered Adh expression (a copia element approximately 250 bp 5′ to the distal transcript start site). Nonetheless, the frequency spectra of transposable elements within and between Drosophila species suggests they are slightly deleterious. Strong nonrandom associations are observed among Adh region sequence variants, ADH allozyme (Fast vs. Slow), ADH enzyme activity and the chromosome inversion ln(2L)t. Phylogenetic analysis of restriction map haplotypes suggest that the major twofold component of ADH activity variation (high vs. low, typical of Fast and Slow allozymes, respectively) is due to sequence variation tightly linked to and possibly distinct from that underlying the allozyme difference. The patterns of nucleotide and haplotype variation for Fast and Slow allozyme lines are consistent with the recent increase in frequency and spread of the Fast haplotype associated with high ADH activity. These data emphasize the important role of evolutionary history and strong nonrandom associations among tightly linked sequence variation as determinants of the patterns of variation observed in natural populations.


Sign in / Sign up

Export Citation Format

Share Document