quasigeostrophic equations
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 0)

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Luciano Abadias ◽  
Pedro J. Miana

In this paper we treat the following partial differential equation, the quasigeostrophic equation: ∂/∂t+u·∇f=-σ-Aαf,  0≤α≤1, where (A,D(A)) is the infinitesimal generator of a convolution C0-semigroup of positive kernel on Lp(Rn), with 1≤p<∞. Firstly, we give remarkable pointwise and integral inequalities involving the fractional powers (-A)α for 0≤α≤1. We use these estimates to obtain Lp-decayment of solutions of the above quasigeostrophic equation. These results extend the case of fractional derivatives (taking A=Δ, the Laplacian), which has been studied in the literature.


2016 ◽  
Vol 46 (1) ◽  
pp. 125-139 ◽  
Author(s):  
Cesar B. Rocha ◽  
William R. Young ◽  
Ian Grooms

AbstractThis study investigates the representation of solutions of the three-dimensional quasigeostrophic (QG) equations using Galerkin series with standard vertical modes, with particular attention to the incorporation of active surface buoyancy dynamics. This study extends two existing Galerkin approaches (A and B) and develops a new Galerkin approximation (C). Approximation A, due to Flierl, represents the streamfunction as a truncated Galerkin series and defines the potential vorticity (PV) that satisfies the inversion problem exactly. Approximation B, due to Tulloch and Smith, represents the PV as a truncated Galerkin series and calculates the streamfunction that satisfies the inversion problem exactly. Approximation C, the true Galerkin approximation for the QG equations, represents both streamfunction and PV as truncated Galerkin series but does not satisfy the inversion equation exactly. The three approximations are fundamentally different unless the boundaries are isopycnal surfaces. The authors discuss the advantages and limitations of approximations A, B, and C in terms of mathematical rigor and conservation laws and illustrate their relative efficiency by solving linear stability problems with nonzero surface buoyancy. With moderate number of modes, B and C have superior accuracy than A at high wavenumbers. Because B lacks the conservation of energy, this study recommends approximation C for constructing solutions to the surface active QG equations using the Galerkin series with standard vertical modes.


2008 ◽  
Vol 65 (3) ◽  
pp. 1063-1076 ◽  
Author(s):  
R. Rotunno ◽  
C. Snyder

Abstract In a seminal paper, E. N. Lorenz proposed that flows with many scales of motion in which smaller-scale error spreads to larger scales and in which the error-doubling time decreases with decreasing scale have a finite range of predictability. Although the Lorenz theory of limited predictability is widely understood and accepted, the model upon which the theory is based is less so. The primary objection to the model is that it is based on the two-dimensional vorticity equation (2DV) while simultaneously emphasizing results using a basic turbulent flow with a “−5/3” energy spectrum in the atmospheric synoptic scale instead of those using a more theoretically and observationally consistent “−3” spectrum. The present work generalizes the Lorenz model so that it may apply to the surface quasigeostrophic equations (SQGs), which are mathematically very similar to 2DV but are known to have a −5/3 kinetic energy spectrum downscale from a large-scale forcing. This generalized Lorenz model is applied here to both 2DV (with a −3 spectrum) and SQG (with a −5/3 spectrum), producing examples of flows with unlimited and limited predictability, respectively. Comparative analysis of the two models allows for the identification of the distinctive attributes of a many-scaled flow with limited predictability.


2007 ◽  
Vol 64 (12) ◽  
pp. 4520-4522 ◽  
Author(s):  
Che Sun

Abstract A general property on the phase relation in linear baroclinic instability is proved analytically: in a potential vorticity homogenization regime, the complex geometry of the quasigeostrophic equations determines that the phase lines of temperature and pressure disturbances tilt with height in opposite directions.


Author(s):  
Jean-Yves Chemin ◽  
Benoit Desjardins ◽  
Isabelle Gallagher ◽  
Emmanuel Grenier

Aimed at graduate students, researchers and academics in mathematics, engineering, oceanography, meteorology, and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The text is divided into four parts, with the first part providing the physical background of the geophysical models to be analyzed. Part two is devoted to a self contained proof of the existence of weak (or strong) solutions to the imcompressible Navier-Stokes equations. Part three deals with the rapidly rotating Navier-Stokes equations, first in the whole space, where dispersion effects are considered. The case where the domain has periodic boundary conditions is then analyzed, and finally rotating Navier-Stokes equations between two plates are studied, both in the case of periodic horizontal coordinated and those in R2. In Part IV, the stability of Ekman boundary layers and boundary layer effects in magnetohydrodynamics and quasigeostrophic equations are discussed. The boundary layers which appear near vertical walls are presented and formally linked with the classical Prandlt equations. Finally spherical layers are introduced, whose study is completely open.


Author(s):  
Rick Salmon

Strongly nonlinear, rapidly rotating, stably stratified flow is called geostrophic turbulence. This subject, which blends ideas from chapters 2,4, and 5, is relevant to the large-scale flow in the Earth’s oceans and atmosphere. The quasigeostrophic equations form the basis of the study of geostrophic turbulence. We view the quasigeostrophic equations as a generalization of the vorticity equation for two-dimensional turbulence to include the important effects of stratification, bottom topography, and varying Coriolis parameter. Thus the theory of geostrophic turbulence represents an extension of the theory of two dimensional turbulence. However, its richer physics and greater applicability to real geophysical flows make geostrophic turbulence a much more interesting and important subject. This chapter offers a very brief introduction to the theory of geostrophic turbulence. We illustrate the principal ideas by separately considering the effects of bottom topography, varying Coriolis parameter, and density stratification on highly nonlinear, quasigeostrophic flow. We make no attempt at a comprehensive review. In every case, the theory of geostrophic turbulence relies almost solely on two now-familiar components: a conservation principle that energy and potential vorticity are (nearly) conserved and an irreversibility principle in the form of an appealing assumption that breaks the time-reversal symmetry of the exact (inviscid) dynamics. This irreversibility assumption takes a great many superficially dissimilar forms, fostering the misleading impression of a great many competing explanations for the same phenomena. However, broadminded analysis inevitably reveals that these competing explanations are virtually equivalent. We begin by considering the quasigeostrophic flow of a single layer of homogeneous fluid over a bumpy bottom. No case better illustrates how diverse forms of the irreversibility principle lead to the same conclusions.


Sign in / Sign up

Export Citation Format

Share Document