The relationship between maternal and fetal plasma protein binding of methadone in the ewe during the third trimester

Life Sciences ◽  
1982 ◽  
Vol 30 (15) ◽  
pp. 1271-1279 ◽  
Author(s):  
Hazel H. Szeto ◽  
Jason G. Umans ◽  
Hilary R. Umans ◽  
Jeffrey W. McFarland
2017 ◽  
Vol 69 (1) ◽  
pp. 175-179
Author(s):  
Jadranka Odovic ◽  
Jovana Trbojevic ◽  
Jasna Trbojevic-Stankovic ◽  
Dejan Nesic ◽  
Ratomir Jelic

In this study we investigated the relationship between the calcium channel blockers (CCBs), amlodipine, felodipine, isradipine, nicardipine, nifedipine, nimodipine, nisoldipine, verapamil and diltiazem, and their calculated molecular descriptors: polar surface area (PSA), molecular weight (Mw), volume value (Vol), aqueous solubility data (logS), lipophilicity (logP), acidity (pKa values) and plasma protein binding (PPB) data, obtained from relevant literature. The relationships between the computed molecular properties of selected CCBs and their PPB data were investigated by simple linear regression analysis that revealed very low correlations (R2<0.35). When multiple linear regression (MLR) analysis was applied to investigate reliable correlations between the CCBs? calculated molecular descriptors and PPB data, the best correlations were found for the relationships between CCBs, and PPB data and lipophilicity, and with application of the molecular descriptor (Mw, Vol, or pKa) data as additional independent variables (R2=0.623; R2=0.741; R2=0.657, respectively), with an acceptable probability value (P<0.05), confirming that lipophilicity, together with other molecular properties, are essential for the drugs? PPB. We conclude that this could be considered as an additional in vitro approach for modeling CCBs.


Author(s):  
Tarun Sharma ◽  
Sidharth Mehan

: In these challenging times of the pandemic, as coronavirus disease 2019 (COVID-19) has taken over the planet, its complications such as acute respiratory distress syndrome (ARDS) have the potential to wipe out a large portion of our population. Whereas a serious lack of ventilators, vaccine being months away makes the condition even worse. That's why promising drug therapy is required. One of them was suggested in this article. It is the angiotensin-converting enzyme-2 (ACE-2) to which the COVID-19 virus binds and upon downregulation of which the pulmonary permeability increases and results in the filling of alveoli by proteinaceous fluids, which finally results in ARDS. ARDS can be assisted by angiotensinII type-1 receptor (AT-1R) blocker and ACE-2 upregulator. AT-1R blocker will prevent vasoconstriction, the proinflammatory effect seen otherwise upon its activation. ACE-2 upregulation will ensure less formation of angiotensin II, vasodilatory effects due to the formation of angiotensin (1-7), increased breakdown of bradykinin at lung level. Overall, decreased vasoconstriction of vessels supplying lungs and decreased vasodilation of lung tissues will ensure decreased pulmonary permeability and eventually relieve ARDS. It should also be considered that all components of the reninangiotensin-aldosterone system (RAAS) are located in the lung tissues. A drug with the least plasma protein binding is required to ensure its distribution across these lung tissues. Cotinine appears to be a promising candidate for COVID-19- induced ARDS. It acts across the board and acts as both an AT-1R blocker, ACE-2 upregulator. It also has a weak plasma protein binding that helps to spread through the lung tissues. In this review, we summarized that cotinine, along with COVID-19 virus replication blocker anti-virals, may prove to be a promising therapy for the treatment of COVID-19 induced ARDS.


Sign in / Sign up

Export Citation Format

Share Document