Modulation of erythrocyte Na transport pathways by excess Na intake

Life Sciences ◽  
1985 ◽  
Vol 37 (3) ◽  
pp. 243-253 ◽  
Author(s):  
G. Dagher ◽  
M. Brossard ◽  
J.C. Feray ◽  
R.P. Garay
Ionics ◽  
2021 ◽  
Author(s):  
Yossra Sallemi ◽  
Riadh Marzouki ◽  
Youssef Ben Smida ◽  
Adel A. El-zahhar ◽  
Mohsen Graia

1994 ◽  
Vol 266 (3) ◽  
pp. C669-C675 ◽  
Author(s):  
J. R. Schelling ◽  
S. L. Linas

Angiotensin II (ANG II) receptors are present on apical and basolateral surfaces of proximal tubule cells. To determine the cellular mechanisms of proximal tubule ANG II receptor-mediated Na transport, apical-to-basolateral 22Na flux was measured in cultured proximal tubule cells. Apical ANG II caused increases in 22Na flux (maximum response: 100 nM, 30 min). Basolateral ANG II resulted in 22Na flux that was 23-56% greater than 22Na flux observed with equimolar apical ANG II. Apical ANG II-induced 22Na flux was prevented by preincubation with amiloride, ouabain, and the AT1 receptor antagonist losartan. Because apical ANG II signaling was previously shown to be endocytosis dependent, we questioned whether endocytosis was required for ANG II-stimulated proximal tubule Na transport as well. Apical (but not basolateral) ANG II-dependent 22Na flux was inhibited by phenylarsine oxide, an agent which prevents ANG II receptor internalization. In conclusion, apical and basolateral ANG II caused proximal tubule Na transport. Apical ANG II-dependent Na flux was mediated by AT1 receptors, transcellular transport pathways, and receptor-mediated endocytosis.


1984 ◽  
Vol 84 (3) ◽  
pp. 379-401 ◽  
Author(s):  
J C Parker ◽  
V Castranova

Shrinkage of dog red blood cells (RBC) activates a Na transport pathway that is Cl dependent, amiloride sensitive, and capable of conducting Na-proton counterflow. It is possible to establish transmembrane gradients for either Na or protons and to demonstrate that each cation species can drive reciprocal movements of the other. The nature of the coupling between Na and proton movements was investigated using the fluorescent probe diS-C3(5) and also by an indirect method in which K movements through valinomycin channels were used to draw inferences about the membrane potential. No evidence was found to suggest that the Na-proton pathway activated by shrinkage of dog RBC is a conductive one. By exclusion, it is presumed that the coupling between the counterflow of Na and protons is electroneutral. The volume-activated Na-proton fluxes in dog RBC have certain properties that distinguish them from similar transport pathways in other cell types.


1994 ◽  
Vol 267 (1) ◽  
pp. C146-C156 ◽  
Author(s):  
M. A. Robertson ◽  
J. K. Foskett

Fluid secretion by epithelial cells can be modulated by agents that activate Cl- channels in the apical membrane. To sustain secretion, Cl- influx across the basolateral membrane must also be accelerated. To examine the cellular mechanisms that couple Cl- efflux across the apical membrane to Na(+)-coupled Cl- entry across the basolateral membrane, we employed optical imaging techniques, utilizing single rat salivary acinar cells. Na+ influx was negligible in resting cells but was rapidly increased by carbachol due to activation of a Na(+)-H+ exchanger, a Na(+)-K(+)-2Cl- cotransporter, and, most likely, a nonselective cation channel. Receptor stimulation was not necessary, since elevation of intracellular Ca2+ concentration ([Ca2+]i) by thapsigargin activated the Na+ transporters at equivalent rates. Cell acidification, activation of protein kinase C, cell shrinkage, and other events associated with the rise of [Ca2+]i had little effect on Na+ transport in resting cells. Nevertheless, stimulation of cells in a medium that prevented normal Ca(2+)-induced cell shrinkage prevented activation of all three transport pathways. The block of the activation was not overcome by osmotic shrinkage but was relieved when [Cl-]i was allowed to fall, including conditions in which [Cl-]i fell in the absence of cell shrinkage. Activation of a Na(+)-H+ exchanger, Na(+)-K(+)-2Cl- cotransporter, and nonselective cation channel therefore exhibits a requirement for agonist-induced fall in [Cl-]i. Low [Cl-]i may create a permissive environment for Ca(2+)-dependent activation of multiple Na(+)-transport pathways, providing a mechanism for cross talk that coordinates transport activities of the apical and basolateral membranes in secretory epithelial cells.


1984 ◽  
Vol 84 (4) ◽  
pp. 565-584 ◽  
Author(s):  
S Grinstein ◽  
J D Goetz ◽  
A Rothstein

The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and countertransport with Ca2+ were ruled out by ion substitution experiments and use of inhibitors. Countertransport for Na+ or H+ through the amiloride-sensitive antiport accounts for only 15-20% of the resting influx. In the presence of amiloride, 22Na+ uptake was increased in Na+-loaded cells, which suggests the existence of Na+/Na+ countertransport. Cytoplasmic pH determinations using fluorescent probes indicated that under certain conditions this amiloride-resistant system will also exchange Na+ for H+, as evidenced by an internal Na+-dependent acidification is proportional to internal [Na+] but inversely related to extracellular [Na+]. Moreover, 22Na+ uptake is inhibited by increasing external [H+]. The results support the existence of a substantial amiloride-insensitive, electroneutral cation exchange system capable of transporting Na+ and H+.


2016 ◽  
Author(s):  
Timothy M. Kresse ◽  
◽  
Phillip D. Hays ◽  
Katherine J. Knierim ◽  
Samantha R. Wacaster

Sign in / Sign up

Export Citation Format

Share Document