scholarly journals 22Na+ fluxes in thymic lymphocytes. I. Na+/Na+ and Na+/H+ exchange through an amiloride-insensitive pathway.

1984 ◽  
Vol 84 (4) ◽  
pp. 565-584 ◽  
Author(s):  
S Grinstein ◽  
J D Goetz ◽  
A Rothstein

The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and countertransport with Ca2+ were ruled out by ion substitution experiments and use of inhibitors. Countertransport for Na+ or H+ through the amiloride-sensitive antiport accounts for only 15-20% of the resting influx. In the presence of amiloride, 22Na+ uptake was increased in Na+-loaded cells, which suggests the existence of Na+/Na+ countertransport. Cytoplasmic pH determinations using fluorescent probes indicated that under certain conditions this amiloride-resistant system will also exchange Na+ for H+, as evidenced by an internal Na+-dependent acidification is proportional to internal [Na+] but inversely related to extracellular [Na+]. Moreover, 22Na+ uptake is inhibited by increasing external [H+]. The results support the existence of a substantial amiloride-insensitive, electroneutral cation exchange system capable of transporting Na+ and H+.

1984 ◽  
Vol 84 (3) ◽  
pp. 379-401 ◽  
Author(s):  
J C Parker ◽  
V Castranova

Shrinkage of dog red blood cells (RBC) activates a Na transport pathway that is Cl dependent, amiloride sensitive, and capable of conducting Na-proton counterflow. It is possible to establish transmembrane gradients for either Na or protons and to demonstrate that each cation species can drive reciprocal movements of the other. The nature of the coupling between Na and proton movements was investigated using the fluorescent probe diS-C3(5) and also by an indirect method in which K movements through valinomycin channels were used to draw inferences about the membrane potential. No evidence was found to suggest that the Na-proton pathway activated by shrinkage of dog RBC is a conductive one. By exclusion, it is presumed that the coupling between the counterflow of Na and protons is electroneutral. The volume-activated Na-proton fluxes in dog RBC have certain properties that distinguish them from similar transport pathways in other cell types.


1984 ◽  
Vol 84 (4) ◽  
pp. 585-600 ◽  
Author(s):  
S Grinstein ◽  
J D Goetz ◽  
A Rothstein

22Na+ flux and cytoplasmic pH (pHi) determinations were used to study the reversibility, symmetry, and mechanism of activation of the Na+/H+ exchange system in rat thymic lymphocytes. In acid-loaded cells, the antiport can be detected as an Na+-induced, amiloride-sensitive alkalinization. At pHi greater than or equal to 7.0, amiloride-sensitive net H+ fluxes are not detectable. To investigate whether at this pHi the transporter is operative in a different mode, e.g., Na+/Na+ exchange, 22Na+ uptake was measured as a function of pHi. The results indicate that the antiport is relatively inactive at pHi greater than or equal to 7.0. Comparison of the rates of H+ efflux (or equivalent OH- uptake) and Na+ uptake indicate that Na+/Na+ countertransport through this system is negligible at all values of pHi and that the Na+:H+ stoichiometry is 1:1. Measurements of pHi in Na+-loaded cells suspended in Na+-free medium revealed an amiloride-sensitive cytoplasmic acidification, which is indicative of exchange of internal Na+ for external H+. The symmetry of the system was analyzed by measuring the effect of extracellular pH (pHo) on Na+ efflux. Unlike cytoplasmic acidification, lowering pHo failed to activate the antiport. The results indicate that the amiloride-sensitive Na+/H+ exchanger is reversible but asymmetric. The system is virtually inactive at pHi greater than or equal to 7.0 but can be activated by protonation of a modifier site on the cytoplasmic surface. Activation can also occur by depletion of cellular Na+. It is proposed that Na+ may also interact with the modifier site, stabilizing the unprotonated (inactive) form.


Ionics ◽  
2021 ◽  
Author(s):  
Yossra Sallemi ◽  
Riadh Marzouki ◽  
Youssef Ben Smida ◽  
Adel A. El-zahhar ◽  
Mohsen Graia

1994 ◽  
Vol 266 (3) ◽  
pp. F367-F374 ◽  
Author(s):  
R. Rick

The pH of the isolated frog skin epithelium was determined on a cellular and subcellular level based on the distribution of a weak organic acid, 4-bromobenzoic acid. The indicator is detectable by X-ray microanalysis due to the presence of an element label. The results show that the pH of principal cells, but not the Na concentration, is closely correlated with the rate of transepithelial Na transport. Acidification leads to an inhibition of Na transport, regardless of whether the change was spontaneous or experimentally induced. Under the conditions of this study, the pH of principal cells was not well regulated. At a bath pH of 7.0, large pH differences between the cell layers were detectable. In mitochondria-rich cells, the pH was a function of the intracellular Cl concentration but not the Na transport rate. The cytoplasmic pH consistently exceeded the nuclear pH. The nuclear-cytoplasmic pH differential in principal cells amounted to 0.3 pH units, which is equivalent to a nuclear potential of -17 mV. The results support the view that the intracellular pH (pHi) is an important regulator of transepithelial Na transport. Regulation is primarily achieved at the level of the apical Na channel, making the Na influx the rate-limiting step in Na reabsorption.


1983 ◽  
Vol 244 (3) ◽  
pp. C188-C197 ◽  
Author(s):  
G. T. Eddlestone ◽  
P. M. Beigelman

The influence of chloride on the mouse pancreatic beta-cell membrane potential and the cell membrane mechanisms controlling intracellular pH (pHi) have been investigated using glass microelectrodes to monitor the membrane potential. It has been shown that chloride is distributed passively across the beta-cell membrane such that chloride potential is equal to the membrane potential. Withdrawal of perifusate chloride or bicarbonate and the application of the drugs 4-acetamido-4'-isethiocyanostilbene-2,2'-disulfonic acid (SITS) and probenecid, both blockers of transmembrane anion movement, have been used to establish that a chloride-bicarbonate exchange system is operative in the cell membrane and that it is one of the control mechanisms of pHi. Amiloride, a specific blocker of the transmembrane sodium proton exchange, has been used to demonstrate that this mechanism is also operative in the beta-cell membrane in the control of pHi. The hypothesis that the calcium-activated potassium permeability is proton sensitive at an intracellular site, a fall in pHi causing a fall in permeability and an increase in pHi causing an increase in permeability, has been used to explain many of the effects observed in this study.


1993 ◽  
Vol 264 (6) ◽  
pp. R1206-R1213 ◽  
Author(s):  
G. A. Ahearn ◽  
P. Franco

Calcium uptake by brush-border membrane vesicles of Atlantic lobster (Homarus americanus) kidneys (antennal glands) in independent experiments was stimulated by outwardly directed Na or H gradients. In the absence of external amiloride, 45Ca uptake was strongly stimulated by an outwardly directed Na gradient, and this stimulation was enhanced by the addition of an inside-negative membrane potential. External amiloride (2 mM) reduced 45Ca uptake sixfold and lowered sensitivity to membrane potential. 45Ca influx kinetics (2.5-s uptake) in the presence of an outwardly directed H gradient and inside-negative membrane potential were composed of three components: 1) an amiloride-sensitive carrier system, 2) an amiloride-insensitive carrier system, and 3) a verapamil- and membrane potential-sensitive process that may represent diffusional transfer through a calcium channel. It was concluded that 45Ca entry by the amiloride-sensitive process occurred by a previously described electrogenic 2 Na-1 H antiport mechanism [Ahearn, G., and L. Clay. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R484-R493, 1989; Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F758-F767, 1990; Ahearn, G., P. Franco, and L. Clay. J. Membr. Biol. 116: 215-226, 1990]. 45Ca influx by the amiloride-insensitive mechanism occurred by an apparent electroneutral 1 Ca-2 Na exchange. Transport stoichiometry of the latter mechanism was tentatively established by experiments determining intravesicular Na binding properties and by its apparent lack of response to a membrane potential. At physiological Na, Ca, and H concentrations in the antennal gland lumen and epithelial cytosol, these three calcium transport pathways individually may make significant contributions to net calcium reabsorption to the blood.


1994 ◽  
Vol 266 (3) ◽  
pp. C669-C675 ◽  
Author(s):  
J. R. Schelling ◽  
S. L. Linas

Angiotensin II (ANG II) receptors are present on apical and basolateral surfaces of proximal tubule cells. To determine the cellular mechanisms of proximal tubule ANG II receptor-mediated Na transport, apical-to-basolateral 22Na flux was measured in cultured proximal tubule cells. Apical ANG II caused increases in 22Na flux (maximum response: 100 nM, 30 min). Basolateral ANG II resulted in 22Na flux that was 23-56% greater than 22Na flux observed with equimolar apical ANG II. Apical ANG II-induced 22Na flux was prevented by preincubation with amiloride, ouabain, and the AT1 receptor antagonist losartan. Because apical ANG II signaling was previously shown to be endocytosis dependent, we questioned whether endocytosis was required for ANG II-stimulated proximal tubule Na transport as well. Apical (but not basolateral) ANG II-dependent 22Na flux was inhibited by phenylarsine oxide, an agent which prevents ANG II receptor internalization. In conclusion, apical and basolateral ANG II caused proximal tubule Na transport. Apical ANG II-dependent Na flux was mediated by AT1 receptors, transcellular transport pathways, and receptor-mediated endocytosis.


Sign in / Sign up

Export Citation Format

Share Document