Residual stresses in high-strength steel weldments and their dimensional stability during welding and stress relieving

1969 ◽  
Vol 4 (2-3) ◽  
pp. 133-145 ◽  
Author(s):  
Giulio Digiacomo
2012 ◽  
Vol 430-432 ◽  
pp. 881-885
Author(s):  
Cai Jun Gan ◽  
Kai Liao

The level and distribution of residual stresses have great impact on dimensional stability, while Vibratory Stress Relief (VSR) is an effective technology to relax or homogenize residual stresses. Experimental study on residual stresses distribution, residual strain energy and machining deformation of 7075 high-strength aluminum alloy thick plate under different aging process status shows that VSR can effectively decrease the amplitude and strain energy density, and enhance stability of dislocation structures and phase states in metal microscopic volume, then internal residual stresses are homogenized to enhance components’ anti-deformation capacity. In addition, the capability in maintaining dimensional stability from VSR is better than that from traditional mechanical stretching process


2020 ◽  
Vol 166 ◽  
pp. 105904
Author(s):  
Dongxu Li ◽  
Anna Paradowska ◽  
Brian Uy ◽  
Jia Wang ◽  
Mahbub Khan

2018 ◽  
Vol 941 ◽  
pp. 269-273
Author(s):  
Constant Ramard ◽  
Denis Carron ◽  
Philippe Pilvin ◽  
Florent Bridier

Multipass arc welding is commonly used for thick plates assemblies in shipbuilding. Sever thermal cycles induced by the process generate inhomogeneous plastic deformation and residual stresses. Metallurgical transformations contribute at each pass to the residual stress evolution. Since residual stresses can be detrimental to the performance of the welded product, their estimation is essential and numerical modelling is useful to predict them. Finite element analysis of multipass welding of a high strength steel is achieved with a special emphasis on mechanical and metallurgical effects on residual stress. A welding mock-up was specially designed for experimental measurements of in-depth residual stresses using contour method and deep hole drilling and to provide a simplified case for simulation. The computed results are discussed through a comparison with experimental measurements.


2021 ◽  
Vol 2 (4) ◽  
pp. 878-890
Author(s):  
Tomoharu Kato ◽  
Yoshihiro Sakino ◽  
Yuji Sano

Laser peening introduces compressive residual stresses on the surfaces of various materials and is effective in enhancing fatigue strength. Using a small microchip laser, with energies of 5, 10, and 15 mJ, the authors applied laser peening to the base material of an HT780 high-strength steel, and confirmed compressive residual stresses in the near-surface layer. Laser peening with a pulse energy of 15 mJ was then applied to fatigue samples of an HT780 butt-welded joint. It was confirmed that laser peening with the microchip laser prolonged the fatigue life of the welded joint samples to the same level as in previous studies with a conventional laser.


Vacuum ◽  
2021 ◽  
Vol 184 ◽  
pp. 109931
Author(s):  
Raghawendra P.S. Sisodia ◽  
Marcell Gáspár ◽  
Máté Sepsi ◽  
Valéria Mertinger

Sign in / Sign up

Export Citation Format

Share Document