Insulin, glucagon, and amino acids during glycemic control by the artificial pancreas in diabetic man

Metabolism ◽  
1980 ◽  
Vol 29 (4) ◽  
pp. 321-332 ◽  
Author(s):  
Amir K. Hanna ◽  
Bernard Zinman ◽  
Azima F. Nakhooda ◽  
Howard L. Minuk ◽  
Elaine F. Stokes ◽  
...  
2021 ◽  
Author(s):  
Coralie Amadou ◽  
Sylvia Franc ◽  
Pierre-Yves Benhamou ◽  
Sandrine Lablanche ◽  
Erik Huneker ◽  
...  

<b>OBJECTIVE </b> <p>To analyze safety and efficacy of the DBLG1 hybrid closed-loop artificial pancreas system in patients with Type 1 Diabetes in real life conditions. </p> <p> </p> <p><b>METHODS</b></p> <p>Following a one-week run-in period with usual pump, 25 patients were provided with the commercial DBLG1 system. We present the results of Time-in-Range and HbA1c over a 6-month period.</p> <p><b> </b></p> <p><b>RESULTS</b></p> <p>The mean (SD;range) age of patients was 43 years (13.8; 25-72). At baseline, mean HbA1c and TIR 70-180mg/dL were respectively 7.9% (0.93; 5.6- 8.5) [63mmol/mol (10; 38-69)] and 53% (16.4;21-85). One patient stopped using the system after 2 months. At 6-month, mean HbA1c decreased to 7.1% [54mmol/mol] (p<0.001) and TIR 70-180mg/dL increased to 69.7% (p<0.0001). TIR<70mg/dL decreased from 2.4 to 1.3% (p=0.03). TIR<54mg/dL decreased from 0.32 to 0.24% (p=0.42). No serious adverse event was reported during the study. </p> <p> </p> <p><b>CONCLUSION</b></p> <p>The DBLG1 System confirms its ability to significantly improve glycemic control in real life conditions, without serious adverse events. </p>


2020 ◽  
Vol 11 ◽  
pp. 204201882095014
Author(s):  
Zekai Wu ◽  
Sihui Luo ◽  
Xueying Zheng ◽  
Yan Bi ◽  
Wen Xu ◽  
...  

Background: Previous studies show that the use of do-it-yourself artificial pancreas system (DIYAPS) may be associated with better glycemic control characterized by improved estimated hemoglobin A1c (eHbA1c) and time in range among adults with type 1 diabetes (T1D). However, few studies have demonstrated the changes in laboratory-measured HbA1c, which is a more accepted index for glycemic control, after using a DIYAPS. Methods: This is a retrospective before-after study approaching patients who reported self-use of AndroidAPS. The main inclusion criteria included: T1D; aged ⩾18 years; having complete record of ⩾3 months of continuous AndroidAPS use; with laboratory-measured HbA1c and quality of life scale data before and after 3 months of AndroidAPS use; and not pregnant. The primary outcome was the change in HbA1c between baseline and 3 months after initiation of AndroidAPS use. Results: Overall, 15 patients (10 females) were included; the median age was 32.2 years (range: 19.2–69.4), median diabetes duration was 9.7 years (range: 1.8–23.7) and median baseline HbA1c was 7.3% (range: 6.4–10.1). The 3 months of AndroidAPS use was associated with substantial reductions in HbA1c [6.79% (SD: 1.29) versus 7.63% (SD: 1.06), p = 0.002] and glycemic variability when compared with sensor-augmented pump therapy. A lower level of fear of hypoglycemia [22.13 points (SD: 6.87) versus 26.27 points (SD: 5.82), p = 0.010] was also observed after using AndroidAPS. Conclusions: The 3 months of AndroidAPS use was associated with significant improvements in glucose management and quality of life among adults with T1D.


2021 ◽  
Vol 45 (6) ◽  
pp. 813-839
Author(s):  
Sun Joon Moon ◽  
Inha Jung ◽  
Cheol-Young Park

Since Banting and Best isolated insulin in the 1920s, dramatic progress has been made in the treatment of type 1 diabetes mellitus (T1DM). However, dose titration and timely injection to maintain optimal glycemic control are often challenging for T1DM patients and their families because they require frequent blood glucose checks. In recent years, technological advances in insulin pumps and continuous glucose monitoring systems have created paradigm shifts in T1DM care that are being extended to develop artificial pancreas systems (APSs). Numerous studies that demonstrate the superiority of glycemic control offered by APSs over those offered by conventional treatment are still being published, and rapid commercialization and use in actual practice have already begun. Given this rapid development, keeping up with the latest knowledge in an organized way is confusing for both patients and medical staff. Herein, we explore the history, clinical evidence, and current state of APSs, focusing on various development groups and the commercialization status. We also discuss APS development in groups outside the usual T1DM patients and the administration of adjunct agents, such as amylin analogues, in APSs.


Metabolism ◽  
1979 ◽  
Vol 28 (5) ◽  
pp. 511-518 ◽  
Author(s):  
B. Zinman ◽  
E.F. Stokes ◽  
A.M. Albisser ◽  
A.K. Hanna ◽  
H.L. Minuk ◽  
...  

2016 ◽  
Vol 64 (4) ◽  
pp. 926.1-926
Author(s):  
DW Lamming ◽  
NE Cummings ◽  
S Arriola Apelo ◽  
JC Neuman ◽  
B Schmidt ◽  
...  

“You are what you eat,” is a well-known axiom coined over 100 years ago by the French politician and epicure Jean Anthelme Brillat-Savarin. With this in mind, it is unsurprising that as diets across the United States and around the globe have become increasingly unhealthy, we have become unhealthy as well. Linked closely with the obesity epidemic, diabetes now affects over 29 million Americans (12.3% of adults over the age of 20). An additional 86 million Americans over the age of 20 are estimated to have pre-diabetes, making this disease an urgent health care problem.As type 2 diabetes is so closely associated with diet and obesity, it is possible that dietary interventions might prove more effective and affordable than pharmaceutical options. Reduced-calorie diets are notoriously difficult to sustain, but altering the macronutrient composition of the diet while keeping the total number of calories constant is an intriguing alternative. Recent findings suggest that a low protein, high carbohydrate diet can increase lifespan and improve metabolic health in rodents, yet the applicability of these studies to humans as well as the mechanisms driving this effect remain unclear.Here, we demonstrate for the first time in a randomized controlled trial that placing humans on a moderately protein restricted (PR) diet for one month improves multiple markers of metabolic health in humans, including fasting blood glucose and body mass index. We observed similar beneficial effects of moderate PR on the metabolic health of mice over the course of 3 months, with improved glucose tolerance starting as early as three weeks after initiation of the diet. While the precise dietary components altered in a PR diet that promote metabolic health have never been defined, we hypothesized that decreased levels of specific amino acids – the building blocks of protein – might mediate these effects.Several studies have shown that insulin-resistant humans have increased serum levels of the three branched-chain amino acids (BCAAs) – leucine, isoleucine, and valine. To study the contribution of reduced BCAAs to the beneficial effects of a PR diet, we placed mice on one of four amino acid (AA) defined diets: Control (21% of calories from AAs), Low AA (7% of calories from AAs), a Low BCAA diet in which the level of the three BCAAs was the same as in the Low AA (7%) diet, but all other AAs were at the level of a Control (21%) diet; and a Low Leucine diet in which only the level of leucine was reduced by 2/3rds. The caloric density of the diet as well as dietary fat was kept constant. We tracked weight and body composition over the course of three months, periodically testing glycemic control through the use of glucose, insulin, and pyruvate tolerance tests and the analysis of circulating hormones. At the end of the experiment, we isolated islets for the ex vivo analysis of glucose stimulated insulin secretion, and collected tissues and blood for subsequent phosphoproteomic and genomic analysis.We find that a specific reduction in dietary branched chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet in mice. Intriguingly, the improved metabolic health of mice fed a low BCAA diet is independent of increased FGF21, an insulin sensitizing hormone believed to be responsible for many of the positive metabolic effects of a PR diet. Switching mice induced to be obese and insulin resistant through high-fat diet feeding to a diet with reduced levels of BCAAs stimulates rapid improvements in glucose tolerance and fat mass loss. Our results highlight a critical role for dietary quality in glycemic control, and suggest that a reduction of dietary BCAAs, or pharmacological interventions in this pathway, may offer a novel and translatable therapy to promote metabolic health.


Sign in / Sign up

Export Citation Format

Share Document