beta cell replacement
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 25)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Eli Ipp

Diabetic retinopathy (DR) is a potentially devastating complication of diabetes because it puts patients at risk of blindness. Diabetes is a common cause of blindness in the U.S. and worldwide and is dramatically increasing in global prevalence. Thus new approaches are needed to prevent this dreaded complication. There is extensive data that indicates beta cell secretory failure is a risk factor for DR, independent of its influence on glycemic control. This perspective article will provide evidence for insufficient endogenous insulin secretion as an important factor in the development of DR. The areas of evidence discussed are: (a) Presence of insulin receptors in the retina, (b) Clinical studies that show an association of beta cell insufficiency with DR, (c) Treatment with insulin in type 2 diabetes, a marker for endogenous insulin deficiency, is an independent risk factor for DR, (d) Recent clinical studies that link DR with an insulin deficient form of type 2 diabetes, and (e) Beta cell replacement studies that demonstrate endogenous insulin prevents progression of DR. The cumulative data drive our conclusion that beta cell replacement will have an important role in preventing DR and/or mitigating its severity in both type 1 diabetes and insulinopenic type 2 diabetes.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2178
Author(s):  
Vinícius M. Gomes ◽  
Rosangela A. M. Wailemann ◽  
Gabriel S. Arini ◽  
Talita C. Oliveira ◽  
Daria R. Q. Almeida ◽  
...  

During type 1 diabetes mellitus (T1DM) development, beta-cells undergo intense endoplasmic reticulum (ER) stress that could result in apoptosis through the failure of adaptation to the unfolded protein response (UPR). Islet transplantation is considered an attractive alternative among beta-cell replacement therapies for T1DM. To avoid the loss of beta-cells that will jeopardize the transplant’s outcome, several strategies are being studied. We have previously shown that prolactin induces protection against proinflammatory cytokines and redox imbalance-induced beta-cell death by increasing heat-shock protein B1 (HSPB1) levels. Since the role of HSPB1 in beta cells has not been deeply studied, we investigated the mechanisms involved in unbalanced protein homeostasis caused by intense ER stress and overload of the proteasomal protein degradation pathway. We tested whether HSPB1-mediated cytoprotective effects involved UPR modulation and improvement of protein degradation via the ubiquitin-proteasome system. We demonstrated that increased levels of HSPB1 attenuated levels of pro-apoptotic proteins such as CHOP and BIM, as well as increased protein ubiquitination and the speed of proteasomal protein degradation. Our data showed that HSPB1 induced resistance to proteotoxic stress and, thus, enhanced cell survival via an increase in beta-cell proteolytic capacity. These results could contribute to generate strategies aimed at the optimization of beta-cell replacement therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Wang ◽  
Esra Karakose ◽  
Lauryn Choleva ◽  
Kunal Kumar ◽  
Robert J. DeVita ◽  
...  

A quantitative deficiency of normally functioning insulin-producing pancreatic beta cells is a major contributor to all common forms of diabetes. This is the underlying premise for attempts to replace beta cells in people with diabetes by pancreas transplantation, pancreatic islet transplantation, and transplantation of beta cells or pancreatic islets derived from human stem cells. While progress is rapid and impressive in the beta cell replacement field, these approaches are expensive, and for transplant approaches, limited by donor organ availability. For these reasons, beta cell replacement will not likely become available to the hundreds of millions of people around the world with diabetes. Since the large majority of people with diabetes have some residual beta cells in their pancreata, an alternate approach to reversing diabetes would be developing pharmacologic approaches to induce these residual beta cells to regenerate and expand in a way that also permits normal function. Unfortunately, despite the broad availability of multiple classes of diabetes drugs in the current diabetes armamentarium, none has the ability to induce regeneration or expansion of human beta cells. Development of such drugs would be transformative for diabetes care around the world. This picture has begun to change. Over the past half-decade, a novel class of beta cell regenerative small molecules has emerged: the DYRK1A inhibitors. Their emergence has tremendous potential, but many areas of uncertainty and challenge remain. In this review, we summarize the accomplishments in the world of beta cell regenerative drug development and summarize areas in which most experts would agree. We also outline and summarize areas of disagreement or lack of unanimity, of controversy in the field, of obstacles to beta cell regeneration, and of challenges that will need to be overcome in order to establish human beta cell regenerative drug therapeutics as a clinically viable class of diabetes drugs.


Author(s):  
Shadab Abadpour ◽  
Chencheng Wang ◽  
Essi M. Niemi ◽  
Hanne Scholz

Abstract Purpose of Review Beta cell replacement therapy as a form of islet transplantation is a promising alternative therapy with the possibility to make selected patients with type 1 diabetes (T1D) insulin independent. However, this technique faces challenges such as extensive activation of the host immune system post-transplantation, lifelong need for immunosuppression, and the scarcity of islet donor pancreas. Advancement in tissue engineering strategies can improve these challenges and allow for a more widespread application of this therapy. This review will discuss the recent development and clinical translation of tissue engineering strategies in beta cell replacement therapy. Recent Findings Tissue engineering offers innovative solutions for producing unlimited glucose responsive cells and fabrication of appropriate devices/scaffolds for transplantation applications. Generation of pancreatic organoids with supporting cells in biocompatible biomaterials is a powerful technique to improve the function of insulin-producing cell clusters. Fabrication of physical barriers such as encapsulation strategies can protect the cells from the host immune system and allow for graft retrieval, although this strategy still faces major challenges to fully restore physiological glucose regulation. Summary The three main components of tissue engineering strategies including the generation of stem cell-derived insulin-producing cells and organoids and the possibilities for therapeutic delivery of cell-seeded devices to extra-hepatic sites need to come together in order to provide safe and functional insulin-producing devices for clinical beta cell replacement therapy.


2021 ◽  
Vol 21 (6) ◽  
Author(s):  
Fanny Buron ◽  
Sophie Reffet ◽  
Lionel Badet ◽  
Emmanuel Morelon ◽  
Olivier Thaunat

Sign in / Sign up

Export Citation Format

Share Document