The role of internal stresses in internal friction

1964 ◽  
Vol 12 (2) ◽  
pp. 92-93 ◽  
Author(s):  
A.D. Brailsford
2011 ◽  
Vol 1 (2) ◽  
Author(s):  
Jerzy Smolik

AbstractThis article presents results which enabled the determination of the role of CrN coating and the influence of its thickness on the effectiveness of hybrid layer “nitrided layer / CrN coating” in the process of increasing the durability of forging dies. Dies coated with hybrid layers “nitrided layer / CrN coating” with various CrN coating thickness were — after different maintenance periods — subjected to metallographic testing, 3D shape testing and SEM analysis. Hardness distribution was also determined. The obtained results revealed that for all tested dies, independently from CrN coating thickness, the main mechanisms of their destruction was mechanical and thermal fatigue, and plastic deformation. It has been shown that the main role of CrN coating in the hybrid layer ”nitrided layer / PVD coating” is to counteract a high temperature influence the source of which is forging on die material. In order to do so the CrN coating should be characterized by a considerably lower thermal conductivity coefficient to steel and low hardness so that it can efficiently resist fatigue processes in the forging process. Based on testing conducted by means of the sin 2 φ method, it was revealed that internal stresses are vitally important for CrN coating for fatigue resistance of hybrid layer ”nitrided layer / CrN coating” during the forging process.


1995 ◽  
Vol 416 ◽  
Author(s):  
S. Nijhawan ◽  
S. M. Jankovsky ◽  
B. W. Sheldon

ABSTRACTThe role of intrinsic stresses in diamond films is examined. The films were deposited on (100) Si substrates by microwave plasma-enhanced chemical vapor deposition. The total internal stresses (thermal and intrinsic) were measured at room temperature with the bending plate method. The thermal stresses are compressive and arise due to the mismatch in thermal expansion coefficient of film and substrate. The intinsic stresses were tensile and evolved during the deposition process. These stresses increased with increasing deposition time. A 12 hour intermediate annealing treatment was found to reduce the tensile stresses considerably. The annealing treatment is most effective when the diamond crystallites are undergoing impingement and coalescence. This is consistent with the theory that the maximum tensile stresses are associated with grain boundary energetics.


2012 ◽  
Vol 184 ◽  
pp. 355-360 ◽  
Author(s):  
Sergey Kustov ◽  
R. Santamarta ◽  
E. Cesari ◽  
K. Sapozhnikov ◽  
V. Nikolaev ◽  
...  

The internal friction of the hyperstabilized martensite demonstrates very low values, both above and below the nominal martensitic transformation temperature, due to a pronounced pinning effect. Over a wide temperature range it is comparable with the level of damping in the parent phase. A study of the temperature dependence of the non-linear ultrasonic internal friction and its strain amplitude hysteresis indicates that the diffusion, assisted by dislocations/interfaces, is quite pronounced and in Ni-Fe-Ga and Cu-Al-Be alloys it operates at temperatures around 20 K. The renucleation of the lamellar parent phase during the reverse martensitic transformation close to 600 K is accompanied by an internal friction peak which demonstrates a substantial transitory contribution. After renucleation of the parent phase the samples recover a conventional martensitic transformation with the internal friction level in the martensite comparable to the one in non-stabilized samples. Observations of a relaxation peak in the parent phase of different alloys for temperatures just below the renucleation stage of the reverse transformation point to the essential role of diffusion in the nucleation of the parent phase in hyperstabilized martensites.


Sign in / Sign up

Export Citation Format

Share Document