A comparison between thomson scatter and meteor radar wind measurements in the 65–105 km altitude region at Arecibo

1981 ◽  
Vol 29 (3) ◽  
pp. 341-348 ◽  
Author(s):  
J.D. Mathews ◽  
M.P. Sulzer ◽  
C.A. Tepley ◽  
R. Bernard ◽  
J.L. Fellous ◽  
...  
2005 ◽  
Vol 67 (13) ◽  
pp. 1211-1215 ◽  
Author(s):  
Santiago de la Peña ◽  
Susan K. Avery ◽  
James P. Avery ◽  
Elías Lau ◽  
Diego Janches

2016 ◽  
Vol 14 ◽  
pp. 169-174
Author(s):  
Ch. Jacobi ◽  
N. Samtleben ◽  
G. Stober

Abstract. Meteor radar observations of mesosphere/lower thermosphere (MLT) daily temperatures have been performed at Collm, Germany since August 2004. The data have been analyzed with respect to long-period oscillations at time scales of 2–30 days. The results reveal that oscillations with periods of up to 6 days are more frequently observed during summer, while those with longer periods have larger amplitudes during winter. The oscillations may be considered as the signature of planetary waves. The results are compared with analyses from radar wind measurements. Moreover, the temperature oscillations show considerable year-to-year variability. In particular, amplitudes of the quasi 5-day oscillation have increased during the last decade, and the quasi 10-day oscillations are larger if the equatorial stratospheric winds are eastward.


1996 ◽  
Vol 23 (10) ◽  
pp. 1079-1082 ◽  
Author(s):  
G. Hernandez ◽  
J. M. Forbes ◽  
R. W. Smith ◽  
Y. Portnyagin ◽  
J. F. Booth ◽  
...  

2013 ◽  
Vol 31 (3) ◽  
pp. 409-418 ◽  
Author(s):  
Q. Li ◽  
J. Xu ◽  
J. Yue ◽  
X. Liu ◽  
W. Yuan ◽  
...  

Abstract. A mesospheric bore event was observed using an OH all-sky airglow imager (ASAI) at Xinglong (40.2° N, 117.4° E), in northern China, on the night of 8–9 January 2011. Simultaneous observations by a Doppler meteor radar, a broadband sodium lidar, and TIMED/SABER OH intensity and temperature measurements are used to investigate the characteristics and environment of the bore propagation and the possible relations with the Na density perturbations. The bore propagated from northeast to southwest and divided the sky into bright and dark halves. The calculations show that the bore has an average phase velocity of 68 m s−1. The crests following the bore have a horizontal wavelength of ~ 22 km. These parameters are consistent with the hydraulic jump theory proposed by Dewan and Picard, as well as the previous bore reports. Simultaneous wind measurements from the Doppler meteor radar at Shisanling (40.3° N, 116.2° E) and temperature data from SABER on board the TIMED satellite are used to characterize the propagating environment of the bore. The result shows that a thermal-Doppler duct exists near the OH layer that supports the horizontal propagation of the bore. Simultaneous Na lidar observations at Yanqing (40.4° N, 116.0° E) suggest that there is a downward displacement of Na density during the passage of the mesospheric bore event.


2005 ◽  
Vol 23 (11) ◽  
pp. 3431-3437 ◽  
Author(s):  
A. N. Oleynikov ◽  
Ch. Jacobi ◽  
D. M. Sosnovchik

Abstract. A procedure of revealing parameters of internal gravity waves from meteor radar wind measurements is presented. The method is based on dividing the measuring volume into different parts and, using wavelet analysis, calculating the phase progression of frequency peaks in the vertical and horizontal direction. Thus, the distribution of vertical and horizontal wavelengths and directions of IGW energy propagation, using meteor radar data, has been obtained. The method was applied to a 4-month data set obtained in July and August, 1998 and 1999. As expected, the majority of waves have been found to propagate upwards, although a considerable number seem to propagate downwards as well. High-frequency (intrinsic periods T* of less than 2 h) waves are dominating. The distribution of waves over the course of an average day is only weakly structured, with weak maxima in the morning and evening.


2021 ◽  
Author(s):  
Jack Wang ◽  
Scott Palo ◽  
Jeffrey Forbes ◽  
John Marino ◽  
Tracy Moffat-Griffin

<div> <p>An unusual sudden stratospheric warming (SSW) occurred in the Southern hemisphere in September 2019. Ground-based and satellite observations show the presence of a transient westward-propagating quasi-10 day planetary wave with zonal wavenumber one during the SSW. The planetary wave activity maximizes in the MLT region approximately 10 days after the SSW onset. Analysis indicates the quasi-10 day planetary wave is symmetric about the equator which is contrary to theory for such planetary waves. </p> </div><div> <p>Observations from MLS and SABER provide a unique opportunity to study the global structure and evolution of the symmetric quasi-10 day wave with observations of both geopotential height and temperature during these unusual atmospheric conditions. The space-based measurements are combined with meteor radar wind measurements from Antarctica, providing a comprehensive view of the quasi-10 day wave activity in the southern hemisphere during this SSW. We will also present the results of our mesospheric and lower thermospheric analysis along with a preliminary analysis of the ionospheric response to these wave perturbations.</p> </div>


Sign in / Sign up

Export Citation Format

Share Document