Effect of field-aligned currents in the polar cap at the recovery phase of a magnetic storm

1981 ◽  
Vol 29 (12) ◽  
pp. 1315-1318 ◽  
Author(s):  
Sh.Sh. Dolginov ◽  
Y.I. Feldstein ◽  
L.V. Strunnikova
2015 ◽  
Vol 33 (9) ◽  
pp. 1117-1133 ◽  
Author(s):  
C. E. Valladares ◽  
T. Pedersen ◽  
R. Sheehan

Abstract. We present multi-instrumented measurements and multi-technique analysis of polar cap patches observed early during the recovery phase of the major magnetic storm of 20 November 2003 to investigate the origin of the polar cap patches. During this event, the Qaanaaq imager observed elongated polar cap patches, some of which containing variable brightness; the Qaanaaq digisonde detected abrupt NmF2 fluctuations; the Sondrestrom incoherent scatter radar (ISR) measured patches placed close to but poleward of the auroral oval–polar cap boundary; and the DMSP-F13 satellite intersected topside density enhancements, corroborating the presence of the patches seen by the imager, the digisonde, and the Sondrestrom ISR. A 2-D cross-correlation analysis was applied to series of two consecutive red-line images, indicating that the magnitude and direction of the patch velocities were in good agreement with the SuperDARN convection patterns. We applied a back-tracing analysis to the patch locations and found that most of the patches seen between 20:41 and 21:29 UT were likely transiting the throat region near 19:41 UT. Inspection of the SuperDARN velocities at this time indicates spatial and temporal collocation of a gap region between patches and large (1.7 km s−1) line-of-sight velocities. The variable airglow brightness of the patches observed between 20:33 and 20:43 UT was investigated using the numerical Global Theoretical Ionospheric Model (GTIM) driven by the SuperDARN convection patterns and a variable upward/downward neutral wind. Our numerical results indicate that variations in the airglow intensity up to 265 R can be produced by a constant 70 m s−1 downward vertical wind.


2013 ◽  
Vol 31 (6) ◽  
pp. 1021-1034 ◽  
Author(s):  
A. T. Aikio ◽  
T. Pitkänen ◽  
I. Honkonen ◽  
M. Palmroth ◽  
O. Amm

Abstract. The polar cap boundary (PCB) location and motion in the nightside ionosphere has been studied by using measurements from the EISCAT radars and the MIRACLE magnetometers during a period of four substorms on 18 February 2004. The OMNI database has been used for observations of the solar wind and the Geotail satellite for magnetospheric measurements. In addition, the event was modelled by the GUMICS-4 MHD simulation. The simulation of the PCB location was in a rather good agreement with the experimental estimates at the EISCAT longitude. During the first three substorm expansion phases, neither the local observations nor the global simulation showed any poleward motions of the PCB, even though the electrojets intensified. Rapid poleward motions of the PCB took place only in the early recovery phases of the substorms. Hence, in these cases the nightside reconnection rate was locally higher in the recovery phase than in the expansion phase. In addition, we suggest that the IMF Bz component correlated with the nightside tail inclination angle and the PCB location with about a 17-min delay from the bow shock. By taking the delay into account, the IMF northward turnings were associated with dipolarizations of the magnetotail and poleward motions of the PCB in the recovery phase. The mechanism behind this effect should be studied further.


1996 ◽  
Vol 39 (4) ◽  
Author(s):  
I. Kutiev ◽  
T. Samardjiev ◽  
P. A. Bradley ◽  
M. I. Dick ◽  
L. R. Cander

The technique of using instantaneous maps for ionospheric storm studies is further developed. Integral parameters are introduced characterizing the main features of each map. These parameters are the net volumes of ?f0F2, ?M(3000)F2and their gradients. The magnetic storm 1-2 March, 1982 was considered and it was found that before the storm commencement and in recovery phase the Net Gradient (NG) is directed steadily to the East, while in the main phase it turns southward. NG shows where the changes of the F-layer come from. The net volume of ?f0F2 (NF) correlates well with Dst and AE indices.


2020 ◽  
Vol 60 (3) ◽  
pp. 301-310
Author(s):  
J. Manninen ◽  
N. G. Kleimenova ◽  
L. I. Gromova ◽  
Yu. V. Fedorenko ◽  
A. S. Nikitenko ◽  
...  

2016 ◽  
Vol 56 (3) ◽  
pp. 276-280 ◽  
Author(s):  
Yu. I. Yermolaev ◽  
I. G. Lodkina ◽  
N. S. Nikolaeva ◽  
M. Yu. Yermolaev

Sign in / Sign up

Export Citation Format

Share Document