Response of equatorial electric field to polarity of interplanetary magnetic field

1989 ◽  
Vol 37 (11) ◽  
pp. 1403-1408 ◽  
Author(s):  
J.Hanumath Sastri
1980 ◽  
Vol 58 (2) ◽  
pp. 255-269 ◽  
Author(s):  
Gordon Rostoker ◽  
R. P. Sharma

In the past decade there has developed a body of circumstantial evidence suggesting that terrestrial meteorology is influenced by plasma and magnetic field properties of the solar wind. In this paper we shall present evidence which strongly suggests that variations in surface pressure at high latitude stations ringing the Gulf of Alaska are correlated with changes in direction of the interplanetary magnetic field. We shall also present evidence that the changes in surface pressure may depend on whether the interplanetary magnetic field changes from pointing sunward to pointing antisunward or vice versa. We shall discuss the role that the magnetospheric electric field, which is heavily modulated by the interplanetary magnetic field, may play in influencing processes which lead to changes in terrestrial weather patterns.


1998 ◽  
Vol 103 (A11) ◽  
pp. 26533-26545 ◽  
Author(s):  
N. E. Turner ◽  
D. N. Baker ◽  
T. I. Pulkkinen ◽  
H. J. Singer ◽  
F. Mozer ◽  
...  

1996 ◽  
Vol 14 (8) ◽  
pp. 794-802 ◽  
Author(s):  
S. P. Mishra ◽  
E. Nielsen

Abstract. The STARE system (Scandinavian Twin Auroral Radar Experiment) provides estimates of electron drift velocities, and hence also of the electric field in the high-latitude E-region ionosphere between 65 and 70 degrees latitude. The occurrence of drift velocities larger than about 400 m/s (equivalent to an electric field of 20 mV/m) have been correlated with the magnitude of the Interplanetary Magnetic Field (IMF) components Bz and By at all local times. Observation days have been considered during which both southward (Bz<0) and northward (Bz>0) IMF occurred. The occurrence of electric fields larger than 20 mV/m increases with increases in Bz magnitudes when Bz<0. It is found that the effects of southward IMF continue for some time following the northward turnings of the IMF. In order to eliminate such residual effects for Bz<0, we have, in the second part of the study, considered those days which were characterized by a pure northward IMF. The occurrence is considerably lower during times when Bz>0, than during those when Bz is negative. These results are related to the expansion and contraction of the auroral oval. The different percentage occurrences of large electric field for By>0 and By<0 components of the IMF during times when Bz>0, clearly display a dawn-dusk asymmetry of plasma flow in the ionosphere. The effects of the time-varying solar-wind speed, density, IMF fluctuations, and magnetospheric substorms on the occurrence of auroral-backscatter observations are also discussed.


2004 ◽  
Vol 22 (12) ◽  
pp. 4243-4258 ◽  
Author(s):  
G. Chisham ◽  
M. P. Freeman ◽  
I. J. Coleman ◽  
M. Pinnock ◽  
M. R. Hairston ◽  
...  

Abstract. This study presents, for the first time, detailed spatiotemporal measurements of the reconnection electric field in the Northern Hemisphere ionosphere during an extended interval of northward interplanetary magnetic field. Global convection mapping using the SuperDARN HF radar network provides global estimates of the convection electric field in the northern polar ionosphere. These are combined with measurements of the ionospheric footprint of the reconnection X-line to determine the spatiotemporal variation of the reconnection electric field along the whole X-line. The shape of the spatial variation is stable throughout the interval, although its magnitude does change with time. Consequently, the total reconnection potential along the X-line is temporally variable but its typical magnitude is consistent with the cross-polar cap potential measured by low-altitude satellite overpasses. The reconnection measurements are mapped out from the ionosphere along Tsyganenko model magnetic field lines to determine the most likely reconnection location on the lobe magnetopause. The X-line length on the lobe magnetopause is estimated to be ~6–11 RE in extent, depending on the assumptions made when determining the length of the ionospheric X-line. The reconnection electric field on the lobe magnetopause is estimated to be ~0.2mV/m in the peak reconnection region. Key words. Space plasma physics (Magnetic reconnection) – Magnetospheric physics (Magnetopause, cusp and boundary layers) – Ionosphere (Plasma convection)


2020 ◽  
Author(s):  
Peter Stauning

Abstract. In the publication Troshichev et al. (2006) on the Polar Cap (PC) indices, PCN (North) and PCS (South), an error was made by using components of the Interplanetary Magnetic Field (IMF) in their Geocentric Solar Ecliptic (GSE) representation instead of the prescribed Geocentric Solar Magnetosphere (GSM) representation for calculations of index scaling parameters in the version AARI_1998-2001 (named AARI#3) issued from the Arctic and Antarctic Research Institute (AARI) in St Petersburg, Russia. The mistake has caused a trail of incorrect relations and wrong conclusions extending since 2006 up to now (2020). The authors of the publication commented here, Troshichev, Podorozhkina, Janzhura (2011): Invariability of relationship between the polar cap magnetic activity and geoeffective interplanetary electric field, Ann. Geophys., 29, 1479-1489, state that they have used scaling parameters of the (invalid) AARI#3 PC index version in their work but have substituted parameters from the more recent AARI_1995-2005 (AARI#4) version instead. The mingling of PC index versions have resulted in erroneous illustrations in their Figs. 1, 2, 3, 6, 7, and 8 and the issuing of non-substantiated statements.


Sign in / Sign up

Export Citation Format

Share Document