Multiple Deglaciations of the Hudson Bay Lowlands, Canada, Since Deposition of the Missinaibi (Last-Integlacial?) Formation

1983 ◽  
Vol 19 (1) ◽  
pp. 18-37 ◽  
Author(s):  
J. T. Andrews ◽  
W. W. Shilts ◽  
G. H. Miller

AbstractThe stratigraphic record in the James and Hudson Bay Lowlands indicates that the sequence of glacial events at the geographical center of the 12.6 × 106 km2 Laurentide Ice Sheet may have been more complex than hitherto imagined. Isoleucine epimerization ratios of in situ and transported shells recovered from till and associated marine and fluvial sediments cluster into at least 4 discrete groups. Two alternative explanations of the data are offered, of which we strongly favor the first. Hypothesis 1: Setting the age of the “last interglacial” marine incursion, the Bell Sea, at 130,000 yr B.P. results in a long-term average diagenetic temperature for the lowlands of +0.6°C. Using this temperature enables us to predict the age of shells intermediate in age between the “last interglaciation” and the incursion of the Tyrrell Sea 8000 yr ago. Between these two interglacial marine inundations, Hudson Bay is predicted to have been free of ice along its southern shore about 35,000, 75,000, and 105,000 yr ago based on amino acid ratios from shells occurring as erratics in several superimposed tills and fluvial sediments. These results suggest (1) that traditional concepts of ice-sheet build-up and decay must be reexamined; (2) that “high” sea levels may have occurred during the Wisconsin Glaciation; and (3) that a critical reappraisal is required of the open ocean δ18O record as a simple indicator of global ice volume. An alternative, Hypothesis 2, is also examined. It is based on the assumption that the 35,000-yr-old deposits calculated on the basis of Hypothesis 1 date from the “last interglaciation”; this, in effect, indicates that the Missinaibi Formation, commonly accepted as sediments of the “last interglaciation,” are about 500,000 yr old and that the effective diagenetic temperature in the lowlands during approximately the last 130,000 yr has been close to −6°C. We argue for rejection of this alternative hypothesis.

2011 ◽  
Vol 31 (3-4) ◽  
pp. 389-400 ◽  
Author(s):  
J. T. Andrews ◽  
K. Tyler

Radiocarbon dated relative sea levels, the tilts of proglacial lake shorelines and raised marine shorelines, the directions of the tilt of these features, and postglacial delevelling are used to construct six isobase maps showing relative sea level movements over the last 12,000, 10,000, 8000, 4000, and 2000 years, No map has more than 30 control points and usually there are only 12 "good" points controlling the isobase patterns. Each map shows the relationship of the isobases to the current ice sheet extent. Along the southern margin of the Laurentide Ice Sheet, the maximum postglacial emergence has been quite uniform with the 240 to 200 m isobase always close to the ice margin. Along the northeastern margin of the ice sheet, the postglacial emergence at the retreating ice edge was closer to 100 m. Equidistant diagrams are drawn along planes southeast from southern Hudson Bay and eastward from Southampton Island. If these diagrams are compared on a Shoreline Relation Diagram, the two profiles appear similar and compare moderately well with a theoretical SR Diagram published in 1969. The isobases show a major uplift center located around the area of James Bay and southern Hudson Bay where a maximum emergence of nearly 300 m occured in the last 7500 years. High marine limits southwest of Ungava Bay need to be dated because if they date close to 8000 BP as we suggest, then more emergence is suggested for the region southwest of Ungava Bay than we currently allow for.


2012 ◽  
Vol 7 ◽  
pp. 37-47 ◽  
Author(s):  
G. Allard ◽  
M. Roy ◽  
B. Ghaleb ◽  
P.J.H. Richard ◽  
A.C. Larouche ◽  
...  

Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Stephanie Melchor

A new analysis of long-term satellite records shows the East Antarctic Ice Sheet is unexpectedly dependent on fluctuations in weather. This study may improve models of how much sea levels will rise.


2007 ◽  
Vol 39 (3) ◽  
pp. 229-238 ◽  
Author(s):  
D. A. Fisher ◽  
N. Reeh ◽  
K. Langley

ABSTRACT A three dimensional steady state plastic ice model; the present surface topography (on a 50 km grid); a recent concensus of the Late Wisconsinan maximum margin (PREST, 1984); and a simple map of ice yield stress are used to model the Laurentide Ice Sheet. A multi-domed, asymmetric reconstruction is computed without prior assumptions about flow lines. The effects of possible deforming beds are modelled by using the very low yield stress values suggested by MATHEWS (1974). Because of low yield stress (deforming beds) the model generates thin ice on the Prairies, Great Lakes area and, in one case, over Hudson Bay. Introduction of low yield stress (deformabie) regions also produces low surface slopes and abrupt ice flow direction changes. In certain circumstances large ice streams are generated along the boundaries between normal yield stress (non-deformable beds) and low yield stress ice (deformabie beds). Computer models are discussed in reference to the geologically-based reconstructions of SHILTS (1980) and DYKE ef al. (1982).


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Rodney W. Brook ◽  
Lisa A. Pollock ◽  
Kenneth F. Abraham ◽  
Glen S. Brown

2020 ◽  
Vol 13 (9) ◽  
pp. 4555-4577
Author(s):  
Ilkka S. O. Matero ◽  
Lauren J. Gregoire ◽  
Ruza F. Ivanovic

Abstract. Simulating the demise of the Laurentide Ice Sheet covering Hudson Bay in the Early Holocene (10–7 ka) is important for understanding the role of accelerated changes in ice sheet topography and melt in the 8.2 ka event, a century long cooling of the Northern Hemisphere by several degrees. Freshwater released from the ice sheet through a surface mass balance instability (known as the saddle collapse) has been suggested as a major forcing for the 8.2 ka event, but the temporal evolution of this pulse has not been constrained. Dynamical ice loss and marine interactions could have significantly accelerated the ice sheet demise, but simulating such processes requires computationally expensive models that are difficult to configure and are often impractical for simulating past ice sheets. Here, we developed an ice sheet model setup for studying the Laurentide Ice Sheet's Hudson Bay saddle collapse and the associated meltwater pulse in unprecedented detail using the BISICLES ice sheet model, an efficient marine ice sheet model of the latest generation which is capable of refinement to kilometre-scale resolutions and higher-order ice flow physics. The setup draws on previous efforts to model the deglaciation of the North American Ice Sheet for initialising the ice sheet temperature, recent ice sheet reconstructions for developing the topography of the region and ice sheet, and output from a general circulation model for a representation of the climatic forcing. The modelled deglaciation is in agreement with the reconstructed extent of the ice sheet, and the associated meltwater pulse has realistic timing. Furthermore, the peak magnitude of the modelled meltwater equivalent (0.07–0.13 Sv) is compatible with geological estimates of freshwater discharge through the Hudson Strait. The results demonstrate that while improved representations of the glacial dynamics and marine interactions are key for correctly simulating the pattern of Early Holocene ice sheet retreat, surface mass balance introduces by far the most uncertainty. The new model configuration presented here provides future opportunities to quantify the range of plausible amplitudes and durations of a Hudson Bay ice saddle collapse meltwater pulse and its role in forcing the 8.2 ka event.


Sign in / Sign up

Export Citation Format

Share Document