Determination of grain boundary segregation by surface studies

1978 ◽  
Vol 12 (6) ◽  
pp. 499-502 ◽  
Author(s):  
M. Menyhard
Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 492 ◽  
Author(s):  
Pavel Lejček ◽  
Siegfried Hofmann ◽  
Václav Paidar

The role of entropy in materials science is demonstrated in this report in order to establish its importance for the example of solute segregation at the grain boundaries of bcc iron. We show that substantial differences in grain boundary chemistry arise if their composition is calculated with or without consideration of the entropic term. Another example which clearly documents the necessity of implementing the entropic term in materials science is the enthalpy-entropy compensation effect. Entropy also plays a decisive role in the anisotropy of grain boundary segregation and in interface characterization. The consequences of the ambiguous determination of grain boundary segregation on the prediction of materials behavior are also briefly discussed. All the mentioned examples prove the importance of entropy in the quantification of grain boundary segregation and consequently of other materials properties.


Author(s):  
C.L. Briant

Grain boundary segregation is the process by which solute elements in a material diffuse to the grain boundaries, become trapped there, and increase their local concentration at the boundary over that in the bulk. As a result of this process this local concentration of the segregant at the grain boundary can be many orders of magnitude greater than the bulk concentration of the segregant. The importance of this problem lies in the fact that grain boundary segregation can affect many material properties such as fracture, corrosion, and grain growth.One of the best ways to study grain boundary segregation is with Auger electron spectroscopy. This spectroscopy is an extremely surface sensitive technique. When it is used to study grain boundary segregation the sample must first be fractured intergranularly in the high vacuum spectrometer. This fracture surface is then the one that is analyzed. The development of scanning Auger spectrometers have allowed researchers to first image the fracture surface that is created and then to perform analyses on individual grain boundaries.


2005 ◽  
Vol 903 ◽  
Author(s):  
Andrew Detor ◽  
Michael K. Miller ◽  
Christopher A. Schuh

AbstractAtom probe tomography is used to observe the solute distribution in electrodeposited nanocrystalline Ni-W alloys with three different grain sizes (3, 10, and 20 nm) and the results are compared with atomistic computer simulations. The presence of grain boundary segregation is confirmed by detailed analysis of composition fluctuations in both experimental and simulated structures, and its extent quantified by a frequency distribution analysis. In contrast to other nanocrystalline alloys, the present Ni-W alloys exhibit only a subtle amount of solute segregation to the intergranular regions. This finding is consistent with quantitative predictions for these alloys based upon a thermodynamic model of grain boundary segregation.


2012 ◽  
Vol 14 (11) ◽  
pp. 968-974 ◽  
Author(s):  
Xavier Sauvage ◽  
Artur Ganeev ◽  
Yulia Ivanisenko ◽  
Nariman Enikeev ◽  
Maxim Murashkin ◽  
...  

2015 ◽  
Vol 160 (5) ◽  
pp. 204-208 ◽  
Author(s):  
Phillip Haslberger ◽  
Christoph Turk ◽  
Katharina Babinsky ◽  
Devrim Caliskanoglu ◽  
Helmut Clemens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document