Determination of valence and coordination of iron in oxidic compounds by means of the x-ray fluorescence emission spectrum

1970 ◽  
Vol 8 (8) ◽  
pp. iii
Author(s):  
A.S. Koster ◽  
G.D. Rieck
Metrologia ◽  
2019 ◽  
Vol 56 (6) ◽  
pp. 065007
Author(s):  
Malte Wansleben ◽  
Yves Kayser ◽  
Philipp Hönicke ◽  
Ina Holfelder ◽  
André Wählisch ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Li Jin ◽  
Ying Wang ◽  
Fengkai Yan ◽  
Jianpo Zhang ◽  
Fangli Zhong

Nitrogen-doped graphene quantum dots had been successfully synthesized and characterized by using transmission electron microscope, X-ray photoelectron spectroscopy, absorbance spectrum, fluorescence emission spectrum, and fluorescence decay curve. TEM results indicated that the diameters of the as-prepared nitrogen-doped graphene quantum dots were in the range of 2 - 5 nm and the lattice space is about 0.276 nm; Raman spectrum result indicated that there were two characteristic peaks, generally named D (~1408 cm−1) and G (~1640 cm−1) bands; both TEM and Raman spectrum results indicated that the as-synthesized product was graphene quantum dots. Deconvoluted high resolution XPS spectra for C1s, O1s, and N1s results indicated that there are -NH-, -COOH, and -OH groups on the surface of nitrogen-doped graphene quantum dot. Fluorescence emission spectrum indicated that the maximum fluorescence emission spectrum of nitrogen-doped graphene quantum dots was blue shift about 30.1 nm and the average fluorescence decay time of nitrogen-doped graphene quantum dots increased about 2 ns, compared with graphene quantum dots without doping of nitrogen. Then, the as-prepared nitrogen-doped graphene quantum dots were used to quantitatively analyze brilliant blue based on the fluorescent quenching of graphene quantum dots, and the effect of pH and reaction time on this fluorescent quenching system was also obtained. Under selected condition, the linear regression equations were F0/F=0.0087 (brilliant blue) + 0.9553 and F0/F=0.01205 (brilliant blue) + 0.6695, and low detection limit was 3.776 μmol/L (3.776 nmol/mL). Once more diluted N-GQDs (0.05 mg/mL) were used, the low detection limit could reach 94.87 nmol/L. Then, temperature-dependent experiment, absorbance spectra, and dynamic fluorescence quenching rate constant were used to study the quenching mechanism; all results indicated that this quenching process was a static quenching process based on the formation of complex between nitrogen-doped graphene quantum dots and brilliant blue through hydrogen bond. Particularly, this method was used to quantitatively analyze the wine sample, of which results have a high consistence with the results of the spectrophotometric method; demonstrating this fluorescence quenching method could be used in practical sample application.


2019 ◽  
Vol 43 (23) ◽  
pp. 9090-9105 ◽  
Author(s):  
Kannan Ramamurthy ◽  
E. J. Padma Malar ◽  
Chellappan Selvaraju

Fluorescence emission spectrum of ketocoumarin dimers in an alcohol:water binary mixture and the solid state.


2019 ◽  
Vol 43 (21) ◽  
pp. 8132-8145 ◽  
Author(s):  
Parisa Mokaberi ◽  
Vida Reyhani ◽  
Zeinab Amiri-Tehranizadeh ◽  
Mohammad Reza Saberi ◽  
Sima Beigoli ◽  
...  

Demonstrates the overlap that had been induced between the fluorescence emission spectrum of Hb and the absorption spectrum of drugs, which has proved that there is a high probability to the occurrence of energy transfer from Hb and LMF in the absence and presence of NRF.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 982 ◽  
Author(s):  
Kollur Shiva Prasad ◽  
Shashanka K. Prasad ◽  
Mohammad Azam Ansari ◽  
Mohammad A. Alzohairy ◽  
Mohammad N. Alomary ◽  
...  

In this work, we aimed to synthesize zinc oxide nanoparticles (ZnONPs) using an aqueous extract of Cassia auriculata leaves (CAE) at room temperature without the provision of additional surfactants or capping agents. The formation of as-obtained ZnONPs was analyzed by UV–visible (ultraviolet) absorption and emission spectroscopy, X-ray photoemission spectroscopy (XPS), X-ray diffraction analysis (XRD), energy dispersive X-ray diffraction (EDX), thermogravimetric analysis/differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The XRD results reflect the wurtzite structure of as-prepared ZnONPs, which produced diffraction patterns showing hexagonal phases. The SEM images indicate that the morphology of as-prepared ZnONPs is composed of hexagonal nanostructures with an average diameter of 20 nm. The HR-TEM result shows that the inter-planar distance between two lattice fringes is 0.260 nm, which coincides with the distance between the adjacent (d-spacing) of the (002) lattice plane of ZnO. The fluorescence emission spectrum of ZnONPs dispersed in ethanol shows an emission maximum at 569 nm, revealing the semiconductor nature of ZnO. As-obtained ZnONPs enhanced the tumoricidal property of CAE in MCF-7 breast cancer cells without significant inhibition of normal human breast cells, MCF-12A. Furthermore, we have studied the antibacterial effects of ZnONPs, which showed direct cell surface contact, resulting in the disturbance of bacterial cell integrity.


Sign in / Sign up

Export Citation Format

Share Document