Heat sources, heat transfer and rock types in the lower continental crust — inference from deep drilling

1996 ◽  
Vol 257 (1) ◽  
pp. 1-6 ◽  
Author(s):  
L. Rybach
Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 104 ◽  
Author(s):  
Alba Patrizia Santo

The Tuscany Magmatic Province consists of a Miocene to Pleistocene association of a wide variety of rock types, including peraluminous crustal anatectic granites and rhyolites, calcalkaline and shoshonitic suites and ultrapotassic lamproites. In addition to the magma types already recognised, the occurrence of a new, distinct magma type at Capraia and Elba islands and in mafic enclaves in the San Vincenzo rhyolites has been suggested by recent studies. This particular type of magma, represented by intermediate to acidic calcalkaline rocks showing high Sr, Ba, and LREE, is restricted to the northwestern sector of the province and to a time interval of about 8 to 4.5 Ma. New data obtained on rocks from Capraia Island have allowed for the verification of the occurrence of this new magma type, the exploration of its origin and a discussion of its possible geodynamic significance. The high-Sr-Ba andesite-dacite rocks occurring in the Laghetto area at Capraia display a composition that is intermediate between adakitic and calcalkaline rocks. It is suggested that they represent a distinct type of magma that originated at mantle pressure by melting of the lower continental crust, followed by mixing with other Capraia magmas. The geodynamic model that best explains the composition of the studied rocks is the thickening of the continental crust during continental collision, followed by extension that favoured melting of the lower crust.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


Author(s):  
Hasan Gunes ◽  
Sertac Cadirci

In this study we show that the POD can be used as a useful tool to solve inverse design problems in thermo-fluids. In this respect, we consider a forced convection problem of air flow in a grooved channel with periodically mounted constant heat-flux heat sources. It represents a cooling problem in electronic equipments where the coolant is air. The cooling of electronic equipments with constant periodic heat sources is an important problem in the industry such that the maximum operating temperature must be kept below a value specified by the manufacturer. Geometric design in conjunction with the improved convective heat transfer characteristics is important to achieve an effective cooling. We obtain a model based on the proper orthogonal decomposition for the convection optimization problem such that for a given channel geometry and heat flux on the chip surface, we search for the minimum Reynolds number (i.e., inlet flow speed) for a specified maximum surface temperature. For a given geometry (l = 3.0 cm and h = 2.3 cm), we obtain a proper orthogonal decomposition (POD) model for the flow and heat transfer for Reynolds number in the range 1 and 230. It is shown that the POD model can accurately predict the flow and temperature field for off-design conditions and can be used effectively for inverse design problems.


Sign in / Sign up

Export Citation Format

Share Document