Large-scale vectorized implicit calculations in solid mechanics on a Cray X-MP/48 utilizing EBE preconditioned conjugate gradients

1987 ◽  
Vol 61 (2) ◽  
pp. 215-248 ◽  
Author(s):  
Thomas J.R. Hughes ◽  
Robert M. Ferencz ◽  
John O. Hallquist
2020 ◽  
Vol 13 (12) ◽  
pp. 6265-6284
Author(s):  
Emmanuel Wyser ◽  
Yury Alkhimenkov ◽  
Michel Jaboyedoff ◽  
Yury Y. Podladchikov

Abstract. We present an efficient MATLAB-based implementation of the material point method (MPM) and its most recent variants. MPM has gained popularity over the last decade, especially for problems in solid mechanics in which large deformations are involved, such as cantilever beam problems, granular collapses and even large-scale snow avalanches. Although its numerical accuracy is lower than that of the widely accepted finite element method (FEM), MPM has proven useful for overcoming some of the limitations of FEM, such as excessive mesh distortions. We demonstrate that MATLAB is an efficient high-level language for MPM implementations that solve elasto-dynamic and elasto-plastic problems. We accelerate the MATLAB-based implementation of the MPM method by using the numerical techniques recently developed for FEM optimization in MATLAB. These techniques include vectorization, the use of native MATLAB functions and the maintenance of optimal RAM-to-cache communication, among others. We validate our in-house code with classical MPM benchmarks including (i) the elastic collapse of a column under its own weight; (ii) the elastic cantilever beam problem; and (iii) existing experimental and numerical results, i.e. granular collapses and slumping mechanics respectively. We report an improvement in performance by a factor of 28 for a vectorized code compared with a classical iterative version. The computational performance of the solver is at least 2.8 times greater than those of previously reported MPM implementations in Julia under a similar computational architecture.


1989 ◽  
Vol 29 (4) ◽  
pp. 635-657 ◽  
Author(s):  
Iain S. Duff ◽  
Gérard A. Meurant

Author(s):  
Gordon Ogilvie

Hundreds of planets are already known to have orbits only a few times wider than the stars that host them. The tidal interaction between a planet and its host star is one of the main agents shaping the observed distributions of properties of these systems. Tidal dissipation in the planet tends make the orbit circular, as well as synchronizing and aligning the planet’s spin with the orbit, and can significantly heat the planet, potentially affecting its size and structure. Dissipation in the star typically leads to inward orbital migration of the planet, accelerating the star’s rotation, and in some cases destroying the planet. Some essential features of tidal evolution can be understood from the basic principles that angular momentum and energy are exchanged between spin and orbit by means of a gravitational field and that energy is dissipated. For example, most short-period exoplanetary systems have too little angular momentum to reach a tidal equilibrium state. Theoretical studies aim to explain tidal dissipation quantitatively by solving the equations of fluid and solid mechanics in stars and planets undergoing periodic tidal forcing. The equilibrium tide is a nearly hydrostatic bulge that is carried around the body by a large-scale flow, which can be damped by convection or hydrodynamic instability, or by viscoelastic dissipation in solid regions of planets. The dynamical tide is an additional component that generally takes the form of internal waves restored by Coriolis and buoyancy forces in a rotating and stratified fluid body. It can lead to significant dissipation if the waves are amplified by resonance, are efficiently damped when they attain a very short wavelength, or break because they exceed a critical amplitude. Thermal tides are excited in a planetary atmosphere by the variable heating by the star’s radiation. They can oppose gravitational tides and prevent tidal locking, with consequences for the climate and habitability of the planet. Ongoing observations of transiting exoplanets provide information on the orbital periods and eccentricities as well as the obliquity (spin–orbit misalignment) of the star and the size of the planet. These data reveal several tidal processes at work and provide constraints on the efficiency of tidal dissipation in a variety of stars and planets.


2020 ◽  
Author(s):  
Klaus Regenauer-Lieb ◽  
Christoph Schrank ◽  
Oliver Gaede ◽  
Benjamin Marks ◽  
Manman Hu ◽  
...  

<p>We present the hypothesis that material instabilities based on multiscale and multiphysics dissipative waves hold the key for understanding the universality of physical phenomena that can be observed over many orders of scale. The approach is based on an extended version of the thermodynamic theory with internal variables (see related abstract by Antoine Jacquey et al. for session EMRP1.4 entitled: “Multiphysics of transient deformation processes leading to macroscopic instabilities in geomaterials”). The internal variables can, in many cases, shown to be related to order parameters in Lev Landau’s phase-transition theory. The extension presented in this contribution consists of replacing the jump condition for the symmetry-breaking order parameter at the critical point (e.g., density difference at the liquid-gas transition) through considering a second-order phase transition, where the internal variables change continuously from the critical point due to the propagation of material-damaging dissipative waves. This extension to the first-order theory allows assessing the dynamics of coupling the rates of chemical reactions, failure and fluid-flow as well as thermo-mechanical instabilities of materials. The approach gives physics-based insights into the processes that are commonly described by empirical relationships. Here, we present a first analytical model extended by numerical analyses and laboratory and field observations that show the existence of these precursor phenomena to large-scale instabilities. In the event that the propagating waves lead to a large-scale instability, the dissipation processes are predicted to leave tell-tale multi-scale structures in their wake, which can be used to decipher the dynamic processes underpinning the event.</p><p>First analyses from a laboratory analogue experiment are presented, illustrating the slow speed of the waves and their peculiar dispersion relationships and reflection from boundaries. An idealized 1-D (oedometric) compaction experiment of a highly porous (45% porosity) carbonate rock investigates the emergence of localized compaction bands proposed to be formed by long-term resonant collision of the transient dissipation waves. Complementary numerical models of the phenomenon allow in-depth analysis of the dynamics and illustrate the physics of the formation of dissipative waves.</p><p>For field application, we propose that a multiscale analysis - from the grain- over the outcrop- up to the lithospheric scale - can be used to extract quantitative information directly from natural deformation bands, fractures, and fault zones on, for example, the state of stress, the size of the underlying earthquakes, the flow and mechanical properties of the host rock, and the spatiotemporal evolution of fluid and mechanical pressure associated with faulting. The experimental investigation of the fundamental instability has broader applications in the fields of industrial processing of multiphase materials, civil, mechanical, and reservoir engineering and solid mechanics.</p>


Sign in / Sign up

Export Citation Format

Share Document