Two-photon doppler free spectroscopy of gas phase molecules

1976 ◽  
Vol 5 (3) ◽  
pp. 199
Author(s):  
J. Gelwachs ◽  
P. Jones ◽  
J. Wessel
Author(s):  
Arturo Sopena ◽  
Henri Bachau ◽  
Fabrice Catoire ◽  
Fernando Martín ◽  
Alicia Palacios

Recent experiments in gas-phase molecules have shown the versatility of using attosecond pulse trains combined with IR femtosecond pulses to track and control excitation and ionization yields on the attosecond...


1987 ◽  
Vol 86 (4) ◽  
pp. 2081-2086 ◽  
Author(s):  
Robert C. Dunbar ◽  
Jyh Horung Chen ◽  
Hun Young So ◽  
Bruce Asamoto
Keyword(s):  

2014 ◽  
Vol 228 (4-5) ◽  
Author(s):  
Chayan Kanti Nandi ◽  
Hans-Dieter Barth ◽  
Bernhard Brutschy

AbstractWe have developed a new laser source, for the spectroscopy of nonvolatile molecules in gas phase. It is based on a laser induced liquid bead ion desorption source (LILBID) combined with a supersonic beam. The cold molecules produced with this technique are sampled with Resonant Two Photon Ionization spectroscopy (R2PI) to measurement of the gas phase optical spectra. LILBID allows to bring nonvolatile molecule from liquid phase (out of a droplet) into gas phase, by means of multi photon ablation with IR photons exciting the vibrations of the solvent. Phenol and its different water clusters have been used as an example to demonstrate the method and to standardise the new experimental setup. The recorded R2PI spectral data of phenol monomer and its different water clusters obtained from this laser desorption technique are in very good agreement with the previously published data. This technique opens a new door for the measurement of molecules under microsolvation and potentially for


2003 ◽  
Vol 95 (5) ◽  
pp. 1896-1900
Author(s):  
Wenfei Yan ◽  
Stephen B. Hall

Captive bubbles are commonly used to determine how interfacial films of pulmonary surfactant respond to changes in surface area, achieved by varying hydrostatic pressure. Although assumed to be isothermal, the gas phase temperature (Tg) would increase by >100°C during compression from 1 to 3 atm if the process were adiabatic. To determine the actual change in temperature, we monitored pressure (P) and volume (V) during compressions lasting <1 s for bubbles with and without interfacial films and used P · V to evaluate Tg. P · V fell during and after the rapid compressions, consistent with reductions in n, the moles of gas phase molecules, because of increasing solubility in the subphase at higher P. As expected for a process with first-order kinetics, during 1 h after the rapid compression P · V decreased along a simple exponential curve. The temporal variation of n moles of gas was determined from P · V >10 min after the compression when the two phases should be isothermal. Back extrapolation of n then allowed calculation of Tg from P · V immediately after the compression. Our results indicate that for bubbles with or without interfacial films compressed to >3 atm within 1 s, the change in Tg is <2°C.


2019 ◽  
Author(s):  
Pralok K. Samanta ◽  
Md Mehboob Alam ◽  
Ramprasad Misra ◽  
Swapan K. Pati

Solvents play an important role in shaping the intramolecular charge transfer (ICT) properties of π-conjugated molecules, which in turn can affect their one-photon absorption (OPA) and two-photon absorption (TPA) as well as the static (hyper)polarizabilities. Here, we study the effect of solvent and donor-acceptor arrangement on linear and nonlinear optical (NLO) response properties of two novel ICT-based fluorescent sensors, one consisting of hemicyanine and dimethylaniline as electron withdrawing and donating groups (molecule 1), respectively and its boron-dipyrromethene (BODIPY, molecule 2)-fused counterpart (molecule 3). Density functional theoretical (DFT) calculations using long-range corrected CAM-B3LYP and M06-2X functionals, suitable for studying properties of ICT molecules, are employed to calculate the desired properties. The dipole moment (µ) as well as the total first hyperpolarizability (β<sub>total</sub>) of the studied molecules in the gas phase is dominantly dictated by the component in the direction of charge transfer. The ratios of vector component of first hyperpolarizability (β<sub>vec</sub>) to β<sub>total</sub> also reveal unidirectional charge transfer process. The properties of the medium significantly affect the OPA, hyperpolarizability and TPA properties of the studied molecules. Time dependent DFT (TDDFT) calculations suggest interchanging between two lowest excited states of molecule 3 from the gas phase to salvation. The direction of charge polarization and dominant transitions among molecular orbitals involved in the OPA and TPA processes are studied. The results presented are expected to be useful in tuning the NLO response of many ICT-based chromophores, especially those with BODIPY acceptors.<br>


Author(s):  
Austin Michael Wallace ◽  
Ryan C. Fortenberry

Ices in the interstellar medium largely exist as amorphous solids composed of small molecules including ammonia, water, and carbon dioxide. Describing gas-phase molecules can be readily accomplished with current high-level...


2015 ◽  
Vol 48 (20) ◽  
pp. 204002 ◽  
Author(s):  
Thomas Kierspel ◽  
Joss Wiese ◽  
Terry Mullins ◽  
Joseph Robinson ◽  
Andy Aquila ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document