Enhanced platelet release reaction and increased thromboxane generation in esophageal achalasia and selective in vitro inhibition of arachidonic acid induced platelet aggregation by vasoactive intestinal peptide

1990 ◽  
Vol 59 (3) ◽  
pp. 693-699
Author(s):  
M. Zahavi ◽  
P. Rozen ◽  
J. Zahavi
1981 ◽  
Vol 45 (03) ◽  
pp. 257-262 ◽  
Author(s):  
P D Winocour ◽  
R L Kinlough-Rathbone ◽  
J F Mustard

SummaryWe have examined whether inhibition by mepacrine of freeing of arachidonic acid from platelet phospholipids inhibits platelet aggregation to collagen, thrombin or ADP, and the release reaction induced by thrombin or collagen. Loss of arachidonic acid was monitored by measuring the amount of 14 C freed from platelets prelabelled with 14 C-arachidonic acid. Mepacrine inhibited 14 C loss by more than 80% but did not inhibit thrombin-induced platelet aggregation and had a small effect on release. ADP-induced platelet aggregation did not cause 14 C loss. Mepacrine inhibited ADP-induced platelet aggregation by inhibiting the association of fibrinogen with platelets during aggregation. The effect of mepacrine on fibrinogen binding could be considerably decreased by washing the platelets but the inhibition of 14 C loss persisted. Platelets pretreated with mepacrine and then washed show restoration of aggregation to collagen. Thus, mepacrine has two effects; 1. it inhibits phospholipases, 2. it inhibits fibrinogen binding. Freeing of arachidonic acid is not necessary for platelet aggregation or the release reaction.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3908-3908
Author(s):  
Shuangfeng Xie ◽  
Songmei Yin ◽  
Danian Nie ◽  
Yiqing Li ◽  
Xiuju Wang ◽  
...  

Abstract Platelet activation, including platelet adhesion, platelet aggregation and platelet release reaction, played an important role in thrombogenesis. We all knew that Platelet glycoprotein IIb/IIIa antagonist was the most effective drug for anti-aggregation, while we don’t know clearly its effect on platelet release reaction and the relations between its effects on platelet aggregation and release reaction. Platelet release reactions included α-granules and dense granules releasing. When α-granules were released, its membrane glycoprotein CD62p was expressed in the platelet membrane. We used the CD62p expression as the index of platelet release reaction. In the current study, the 4-peptides RGDS (Arg-Gly-Asp-Ser) was used as glycoprotein IIb/IIIa antagonist. We detected the effects of RGDS on platelet aggregation and CD62p expression induced by adenosine diphosphate (ADP) (finial concentration, 5μmol/L) in vitro. 50, 100, 200, 400 and 800μmol/L RGDS were used separately in the test. RGDS of each concentration could significantly inhibited maximal platelet aggregation (PAG(M)) induced by ADP, the 50% inhibiting concentration was approximately 200μmol/L. 800μmol/L RGDS could inhibited PAG(M) by 80.48±8.18%. Only ≥200μmol/L RGDS could significantly inhibited platelet CD62p expression. 800μmol/L RGDS could inhibit platelet CD62p expression by 27.31±9.74%. The inhibiting effect of RGDS on PAG(M) and platelet CD62p expression had significantly correlation (r =0.976, P<0.05). These results indicated that RGDS in low concentration (<200μmol) had little negative effect on platelet release reaction induced by ATP, while in relatively high concentration (≥200μmol) RGDS could inhibit platelet release reaction. When RGDS concentrations were same its effect on platelet release reaction was much less than that on platelet aggregation, which indicated that platelet glycoprotein IIb/IIIa compound could only partly participated in the platelet release reaction but fully participated in platelet aggregation induced by ADP.


1973 ◽  
Vol 45 (4) ◽  
pp. 485-494 ◽  
Author(s):  
C. Thomson ◽  
C. D. Forbes ◽  
C. R. M. Prentice

1. Heparin has been shown to increase platelet aggregation by ADP and adrenaline and to enhance the platelet release reaction when tested in citrated platelet-rich plasma (P.R.P.). This activity is present when heparin is added to P.R.P. or when P.R.P. is prepared after intravenous injection of heparin, and when heparin is added to non-anticoagulated native P.R.P. 2. Retention of platelets by cellophane membranes within a specially designed test-cell was significantly increased when heparin was added to citrated whole blood. 3. Though aspirin blocks the release reaction with and without heparin, it does not prevent the potentiation of initial ADP or first wave adrenaline aggregation caused by heparin.


1990 ◽  
Vol 64 (03) ◽  
pp. 473-477 ◽  
Author(s):  
Shih-Luen Chen ◽  
Wu-Chang Yang ◽  
Tung-Po Huang ◽  
Shiang Wann ◽  
Che-ming Teng

SummaryTherapeutic preparations of desmopressin for parenteral use contain the preservative chlorobutanol (5 mg/ml). We show here that chlorobutanol is a potent inhibitor of platelet aggregation and release. It exhibited a significant inhibitory activity toward several aggregation inducers in a concentration- and time-dependent manner. Thromboxane B2 formation, ATP release, and elevation of cytosolic free calcium caused by collagen, ADP, epinephrine, arachidonic acid and thrombin respectively were markedly inhibited by chlorobutanol. Chlorobutanol had no effect on elastase- treated platelets and its antiplatelet effect could be reversed. It is concluded that the antiplatelet effect of chlorobutanol is mainly due to its inhibition on the arachidonic acid pathway but it is unlikely to have a nonspecitic toxic effect. This antiplatelet effect of chlorobutanol suggests that desmopressin, when administered for improving hemostasis, should not contain chlorobutanol as a preservative.


1973 ◽  
Vol 30 (03) ◽  
pp. 494-498 ◽  
Author(s):  
G de Gaetano ◽  
J Vermylen

SummaryThrombelastograms of both native blood and re-calcified platelet-rich plasma samples taken from subjects given a single oral dose of aspirin (1 gram) were not significantly different from the pretreatment recordings. Aspirin also did not modify the thrombelastogram when preincubated in vitro with platelet-rich plasma at concentrations inhibiting the platelet “release reaction” by collagen. Thrombelastography therefore cannot evaluate the effect of aspirin on platelet function.


1973 ◽  
Vol 30 (02) ◽  
pp. 334-338 ◽  
Author(s):  
Felisa C. Molinas

SummaryIt has been postulated that the high phenol and phenolic acids plasmatic levels found in patients with chronic renal failure are contributory factors in the abnormal platelet function described in these patients. This hypothesis was corroborated by “in vitro” studies showing the deleterious effect of these compounds on certain platelet function after pre-incubation of PRP with phenol and phenolic compounds. The present studies were conducted to determine the influence of phenolic compounds on platelet release reaction. It was found that phenol inhibited from 62.5 to 100% the effect of the aggregating agents thrombin, adrenaline and ADP on platelet 5-HT-14C release. The phenolic acids p-, m-, and o-HPAA inhibited from 36.35 to 94.8% adrenaline and ADP-induced platelet 5-HT-14C release. Adrenaline-induced platelet ADP release was inhibited from 27.45 to 38.10% by the phenolic compounds. These findings confirm the hypothesis that phenolic compounds interfere with platelet function through the inhibition of the release reaction.


1976 ◽  
Vol 36 (02) ◽  
pp. 411-423 ◽  
Author(s):  
Nicholas Lekas ◽  
J. C Rosenberg

SummaryHuman platelets labeled with 51Cr were used to determine the contribution made by platelet lysis to the platelet release reaction and platelet aggregation induced by rabbit antihuman platelet serum (APS) and equine antihuman thymocyte globulin (ATG). Platelets were tested in both plasma (PRP) and non-plasma containing media. Antibodies directed against platelets, either as APS or ATG, induced significant amounts of platelet release and aggregation, as well as some degree of lysis, in the absence of complement. The presence of complement increased platelet lysis and aggregation, but not the release reaction. Non-immune horse gamma globulin produced different responses depending upon whether platelets were investigated in PRP or non-plasma containing media. Aggregation was seen in the latter but not the former. These differences can be explained by the presence of plasma components which prevent non-specific immune complexes from causing platelet aggregation. Since platelets in vivo are always in a plasma medium, one must be wary of utilizing data from platelet studies in synthetic plasma-free media as the basis of explaining clinical events. These observations demonstrate at least two, and possibly three, different mechanisms whereby ATG could activate platelets causing thrombotic complications and thrombocytopenia, i.e., via 1) specific and, 2) non-specific non-lytic pathways and 3) a lytic pathway.


1992 ◽  
Vol 67 (02) ◽  
pp. 258-263 ◽  
Author(s):  
Raffaele De Caterina ◽  
Rosa Sicari ◽  
An Yan ◽  
Walter Bernini ◽  
Daniela Giannessi ◽  
...  

SummaryIndobufen is an antiplatelet drug able to inhibit thromboxane production and cyclooxygenase-dependent platelet aggregation by a reversible inhibition of cyclooxygenase. Indobufen exists in two enantiomeric forms, of which only d-indobufen is active in vitro in inhibiting cyclooxygenase. In order to verify that also inhibition of platelet function is totally accounted for by d-indobufen, ten patients with proven coronary artery disease (8 male, 2 female, age, mean ± S.D., 58.7 ± 7.5 years) were given, in random sequence, both 100 mg d-indobufen and 200 mg dl-indobufen as single administrations in a double-blind crossover design study with a washout period between treatments of 72 h. In all patients thromboxane (TX) B2 generation after spontaneous clotting (at 0, 1, 2, 4, 6, 8, 12, 24 h), drug plasma levels (at the same times), platelet aggregation in response to ADP, adrenaline, arachidonic acid, collagen, PAF, and bleeding time (at 0, 2, 12 h) were evaluated after each treatment. Both treatments determined peak inhibition of TXB2 production at 2 h from administration, with no statistical difference between the two treatments (97 ±3% for both treatments). At 12 h inhibition was 87 ± 6% for d-indobufen and 88 ± 6% for dl-indobufen (p = NS). Inhibition of TXB2 production correlated significantly with plasma levels of the drugs. Maximum inhibitory effect on aggregation was seen in response to collagen 1.5 pg/ml (63 ± 44% for d-indobufen and 81 ± 22% for dl-indobufen) and arachidonic acid 0.5-2 mM (78 ± 34% for d-indobufen and 88 ± 24% for dl-indobufen) at 2 h after each administration. An effect of both treatments on platelet aggregation after 12 h was present only for adrenaline 2 μM (55 ± 41% for d-indobufen and 37 ± 54% for dl-indobufen), collagen 1.5 pg/ml (69 ± 30% for d-indobufen and 51 ± 61% for dl-indobufen), arachidonic acid 0.5-2 mM (56 ± 48% for d-indobufen and 35 ± 49% for dl-indobufen). The extent of inhibition of TX production and the extent of residual platelet aggregation were never significantly different between treatments. Bleeding time prolongation was similar in the two treatment groups without showing a pronounced and long lasting effect (from 7.0 ± 2.0 min to 10.0 ± 3.0 min at 2 h and 8.0 ± 2.0 min at 12 h for d-indobufen; from 6.0 ±1.0 min to 8.5 ± 2.0 min at 2 h and 8.0 ± 1.0 min at 12 h for dl-indobufen). These results demonstrate that the biological activity of dl-indobufen as an antiplatelet agent in vivo is totally accounted for by d-indobufen.


1977 ◽  
Vol 38 (03) ◽  
pp. 0640-0651 ◽  
Author(s):  
B. V Chater ◽  
A. R Williams

SummaryPlatelets were found to aggregate spontaneously when exposed to ultrasound generated by a commercial therapeutic device. At a given frequency, aggregation was found to be a dose-related phenomenon, increasing intensities of ultrasound inducing more extensive and more rapid aggregation. At any single intensity, the extent aggregation was increased as the frequency of the applied ultrasound was decreased (from 3.0 to 0.75 MHz).Ultrasound-induced platelet aggregation was found to be related to overall platelet sensitivity to adenosine diphosphate. More sensitive platelets were found to aggregate spontaneously at lower intensities of sound, and also the maximum extent of aggregation was found to be greater. Examination of ultrasound-induced platelet aggregates by electron microscopy demonstrated that the platelets had undergone the release reaction.The observation that haemoglobin was released from erythrocytes in whole blood irradiated under identical physical conditions suggests that the platelets are being distrupted by ultrasonic cavitation (violent gas/bubble oscillation).It is postulated that overall platelet aggregation is the result of two distinct effects. Firstly, the direct action of ultrasonic cavitation disrupts a small proportion of the platelet population, resulting in the liberation of active substances. These substances produce aggregation, both directly and indirectly by inducing the physiological release reaction in adjacent undamaged platelets.


1985 ◽  
Vol 54 (04) ◽  
pp. 842-848 ◽  
Author(s):  
Kandice Kottke-Marchant ◽  
James M Anderson ◽  
Albert Rabinovitch ◽  
Richard A Huskey ◽  
Roger Herzig

SummaryHeparin is known to affect platelet function in vitro, but little is known about the effect of heparin on the interaction of platelets with polymer surfaces in general, and vascular graft materials in particular. For this reason, the effect of heparin vs. citrate anticoagulation on the interaction of platelets with the vascular graft materials expanded polytetrafluoroethylene (ePTFE), Dacron Bionit (DB) and preclotted Dacron Bionit (DB/PC) was studied in a recirculating, in vitro perfusion system. Platelet activation, as shown by a decrease in platelet count, an increase in platelet release and a decrease in platelet aggregation, was observed for all vascular graft materials tested using heparin and was greater for Dacron and preclotted Dacron than for ePTFE. Significant differences between heparin and citrate anticoagulation were seen for platelet release, platelet aggregation and the relative ranking of material platelet-reactivity. However, the trends and time course of platelet activation were similar with both heparin and citrate for the materials tested.


Sign in / Sign up

Export Citation Format

Share Document