[18] Biosynthesis of cartilage proteoglycan and link protein

Author(s):  
James H. Kimura ◽  
Tamayuki Shinomura ◽  
Eugene J.-M.A. Thonar
1979 ◽  
Vol 177 (1) ◽  
pp. 237-247 ◽  
Author(s):  
T E Hardingham

Proteoglycan fractions were prepared from pig laryngeal cartilage. The effect of link-protein on the properties of proteoglycan-hyaluronate aggregates was examined by viscometry and analytical ultracentrifugation. Aggregates containing link-protein were more stable than link-free aggregates at neutral pH, at temperatures up to 50 degrees C and in urea (up to 4.0M). Oligosaccharides of hyaluronate were able to displace proteoglycans from link-free aggregates, but not from the link-stabilized aggregates. Both types of aggregate were observed in the ultracentrifuge, but at the concentration investigated (less than 2 mg/ml) the link-free form was partially dissociated and the proportion aggregated varied with the pH and temperature and required more hyaluronate for saturation than did link-stabilized aggregate. The results showed that link-protein greatly strengthened the binding of proteoglycans to hyaluronate and suggest that under physiological conditions it ‘locks’ proteoglycans on to the hyaluronate chain.


1988 ◽  
Vol 253 (1) ◽  
pp. 175-185 ◽  
Author(s):  
M Mörgelin ◽  
M Paulsson ◽  
T E Hardingham ◽  
D Heinegård ◽  
J Engel

Aggregates formed by the interaction of cartilage proteoglycan monomers and fragments thereof with hyaluronate were studied by electron microscopy by use of rotary shadowing [Wiedemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333]. The differences in shape and packing of the proteins bound along the hyaluronate strand in aggregates formed in the presence and in the absence of link protein were examined in detail. The high resolution of the method allowed examination of the involvement in hyaluronate binding of the globular core-protein domains G1, G2 and G3 [Wiedemann, Paulsson, Timpl, Engel & Heinegård (1984) Biochem. J. 224, 331-333; Paulsson, Mörgelin, Wiedemann, Beardmore-Gray, Dunham, Hardingham, Heinegård, Timpl & Engel (1987) Biochem. J. 245, 763-772]. Fragments comprising the globular hyaluronate-binding region G1 form complexes with hyaluronate with an appearance of necklace-like structures, statistically interspaced by free hyaluronate strands. The closest centre-to-centre distance found between adjacent G1 domains was 12 nm. Another fragment comprising the binding region G1 and the adjacent second globular domain G2 attaches to hyaluronate only by one globule. Also, the core protein obtained by chondroitinase digestion of proteoglycan monomer binds only by domain G1, with domain G3 furthest removed from the hyaluronate. Globule G1 shows a statistical distribution along the hyaluronate strands. In contrast, when link protein is added, binding is no longer random, but instead uninterrupted densely packed aggregates are formed.


1985 ◽  
Vol 260 (23) ◽  
pp. 12402-12404 ◽  
Author(s):  
P J Neame ◽  
J P Périn ◽  
F Bonnet ◽  
J E Christner ◽  
P Jollès ◽  
...  

1981 ◽  
Vol 197 (3) ◽  
pp. 669-674 ◽  
Author(s):  
A Franzén ◽  
S Björnsson ◽  
D Heinegård

Cartilage proteoglycan aggregate formation was studied by zonal rate centrifugation in sucrose gradients. Proteoglycan aggregates, monomers and proteins could be resolved. It was shown that the optimal proportion of hyaluronic acid for proteoglycan aggregate formation was about 1% of proteoglycan dry weight. The reaggregation of dissociated proteoglycan aggregate A1 fraction was markedly concentration-dependent and even at 9 mg/ml only about 90% of the aggregates were reformed. The lowest proportion of link protein required for maximal formation of link-stabilized proteoglycan aggregates was 1.5% of proteoglycan dry weight. It was separately shown that link protein co-sedimented with the proteoglycan monomer. By competition with isolated hyaluronic acid-binding-region fragments, a proportion of the link proteins was removed from the proteoglycan monomers, indicating that the link protein binds to the hyaluronic acid-binding region of the proteoglycan monomer.


1996 ◽  
Vol 14 (2) ◽  
pp. 334-339 ◽  
Author(s):  
Lih-Heng Tang ◽  
Joseph A. Buckwalter ◽  
Lawrence C. Rosenberg

1972 ◽  
Vol 126 (1) ◽  
pp. 163-169 ◽  
Author(s):  
H Keiser ◽  
H J. Shulman ◽  
J I. Sandson

Cartilage proteoglycan is thought to be composed of subunits, core proteins with covalently attached sulphated polysaccharide side chains, which form aggregates by non-covalent association with a link protein. The new technique of non-disruptive extraction followed by fractionation in caesium chloride gradients provides a useful means of preparing relatively pure proteoglycan aggregate, subunit and link fractions. Immunological studies of these fractions led to the identification of an antigen associated with the proteoglycan subunit which was common to several species and to the demonstration of additional species-specific antigens in aggregate and link fractions derived from bovine nasal cartilage. Polyacrylamide-gel electrophoresis with sodium dodecyl sulphate of bovine proteoglycan aggregate and link fractions gave two protein bands in the gels and a protein–polysaccharide band at the origin; subunit fractions gave only the band at the origin. These results are consistent with the current concept of cartilage proteoglycan structure.


Sign in / Sign up

Export Citation Format

Share Document