Orbital chemistry—Lunar surface analysis from the X-ray and gamma ray remote sensing experiments

1977 ◽  
Vol 10 ◽  
pp. 17-43 ◽  
Author(s):  
Isidore Adler ◽  
Jacob I. Trombka
2006 ◽  
Vol 111 (E12) ◽  
pp. n/a-n/a ◽  
Author(s):  
T. H. Prettyman ◽  
J. J. Hagerty ◽  
R. C. Elphic ◽  
W. C. Feldman ◽  
D. J. Lawrence ◽  
...  

2020 ◽  
Author(s):  
Erik Kuulkers ◽  
Anniek Gloudemans

<p>The Apollo 15 & 16 missions were the first to explore the Lunar surface chemistry by investigating about 10 percent of the Lunar surface using a remote sensing X-ray fluorescence spectrometer experiment. The data obtained has been extensively used to study Lunar formation history and geological evolution. In this work a re-evaluation of the Apollo 15 & 16 X-ray fluorescence experiment is conducted with the aim to obtain up-to-date empirical values for aluminum (Al) and magnesium (Mg) concentrations relative to silicon (Si) of the upper Lunar surface. An up-to-date orbit reconstruction, updated instrument response, and improved intensity ratio calculations are used to obtain new intensity ratio maps.</p>


1987 ◽  
Vol 48 (C9) ◽  
pp. C9-367-C9-370
Author(s):  
C. B. COLLINS ◽  
F. DAVANLOO ◽  
T. S. BOWEN ◽  
J. J. COOGAN
Keyword(s):  

2003 ◽  
Vol 8 (5-6) ◽  
pp. 60-64
Author(s):  
A.I. Arkhangelsky ◽  
◽  
Yu.D. Kotov ◽  
P.Yu. Chistiakov ◽  
◽  
...  

1998 ◽  
Vol 502 (1) ◽  
pp. 428-436 ◽  
Author(s):  
Igor V. Moskalenko ◽  
Werner Collmar ◽  
Volker Schonfelder

1996 ◽  
Vol 165 ◽  
pp. 313-319
Author(s):  
Mark H. Finger ◽  
Robert B. Wilson ◽  
B. Alan Harmon ◽  
William S. Paciesas

A “giant” outburst of A 0535+262, a transient X-ray binary pulsar, was observed in 1994 February and March with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory. During the outburst power spectra of the hard X-ray flux contained a QPO-like component with a FWHM of approximately 50% of its center frequency. Over the course of the outburst the center frequency rose smoothly from 35 mHz to 70 mHz and then fell to below 40 mHz. We compare this QPO frequency with the neutron star spin-up rate, and discuss the observed correlation in terms of the beat frequency and Keplerian frequency QPO models in conjunction with the Ghosh-Lamb accretion torque model.


Sign in / Sign up

Export Citation Format

Share Document