The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro

Cell ◽  
1986 ◽  
Vol 45 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Joseph A. Knezetic ◽  
Donal S. Luse
1988 ◽  
Vol 8 (8) ◽  
pp. 3114-3121
Author(s):  
J A Knezetic ◽  
G A Jacob ◽  
D S Luse

We have previously shown that assembly of nucleosomes on the DNA template blocks transcription initiation by RNA polymerase II in vitro. In the studies reported here, we demonstrate that assembly of a complete RNA polymerase II preinitiation complex before nucleosome assembly results in nucleosomal templates which support initiation in vitro as efficiently as naked DNA. Control experiments prove that our observations are not the result of slow displacement of nucleosomes by the transcription machinery during chromatin assembly, nor are they an artifact of inefficient nucleosome deposition on templates already bearing an RNA polymerase. Thus, the RNA polymerase II preinitiation complex appears to be resistant to disruption by subsequent nucleosome assembly.


1988 ◽  
Vol 8 (8) ◽  
pp. 3114-3121 ◽  
Author(s):  
J A Knezetic ◽  
G A Jacob ◽  
D S Luse

We have previously shown that assembly of nucleosomes on the DNA template blocks transcription initiation by RNA polymerase II in vitro. In the studies reported here, we demonstrate that assembly of a complete RNA polymerase II preinitiation complex before nucleosome assembly results in nucleosomal templates which support initiation in vitro as efficiently as naked DNA. Control experiments prove that our observations are not the result of slow displacement of nucleosomes by the transcription machinery during chromatin assembly, nor are they an artifact of inefficient nucleosome deposition on templates already bearing an RNA polymerase. Thus, the RNA polymerase II preinitiation complex appears to be resistant to disruption by subsequent nucleosome assembly.


2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


1982 ◽  
Vol 257 (10) ◽  
pp. 5779-5788 ◽  
Author(s):  
G A Kassavetis ◽  
E T Butler ◽  
D Roulland ◽  
M J Chamberlin

2004 ◽  
Vol 24 (7) ◽  
pp. 2932-2943 ◽  
Author(s):  
Hailing Cheng ◽  
Xiaoyuan He ◽  
Claire Moore

ABSTRACT Swd2, an essential WD repeat protein in Saccharomyces cerevisiae, is a component of two very different complexes: the cleavage and polyadenylation factor CPF and the Set1 methylase, which modifies lysine 4 of histone H3 (H3-K4). It was not known if Swd2 is important for the function of either of these entities. We show here that, in extract from cells depleted of Swd2, cleavage and polyadenylation of the mRNA precursor in vitro are completely normal. However, temperature-sensitive mutations or depletion of Swd2 causes termination defects in some genes transcribed by RNA polymerase II. Overexpression of Ref2, a protein previously implicated in snoRNA 3′ end formation and Swd2 recruitment to CPF, can rescue the growth and termination defects, indicating a functional interaction between the two proteins. Some swd2 mutations also significantly decrease global H3-K4 methylation and cause other phenotypes associated with loss of this chromatin modification, such as loss of telomere silencing, hydroxyurea sensitivity, and alterations in repression of INO1 transcription. Even though the two Swd2-containing complexes are both localized to actively transcribed genes, the allele specificities of swd2 defects suggest that the functions of Swd2 in mediating RNA polymerase II termination and H3-K4 methylation are not tightly coupled.


2001 ◽  
Vol 276 (15) ◽  
pp. 12266-12273 ◽  
Author(s):  
Wenxiang Wei ◽  
Dorjbal Dorjsuren ◽  
Yong Lin ◽  
Weiping Qin ◽  
Takahiro Nomura ◽  
...  

The general transcription factor IIF (TFIIF) assembled in the initiation complex, and RAP30 of TFIIF, have been shown to associate with RNA polymerase II (pol II), although it remains unclear which pol II subunit is responsible for the interaction. We examined whether TFIIF interacts with RNA polymerase II subunit 5 (RPB5), the exposed domain of which binds transcriptional regulatory factors such as hepatitis B virus X protein and a novel regulatory protein, RPB5-mediating protein. The results demonstrated that RPB5 directly binds RAP30in vitrousing purified recombinant proteins andin vivoin COS1 cells transiently expressing recombinant RAP30 and RPB5. The RAP30-binding region was mapped to the central region (amino acids (aa) 47–120) of RPB5, which partly overlaps the hepatitis B virus X protein-binding region. Although the middle part (aa 101–170) and the N-terminus (aa 1–100) of RAP30 independently bound RPB5, the latter was not involved in the RPB5 binding when RAP30 was present in TFIIF complex. Scanning of the middle part of RAP30 by clustered alanine substitutions and then point alanine substitutions pinpointed two residues critical for the RPB5 binding inin vitroandin vivoassays. Wild type but not mutants Y124A and Q131A of RAP30 coexpressed with FLAG-RAP74 efficiently recovered endogenous RPB5 to the FLAG-RAP74-bound anti-FLAG M2 resin. The recovered endogenous RPB5 is assembled in pol II as demonstrated immunologically. Interestingly, coexpression of the central region of RPB5 and wild type RAP30 inhibited recovery of endogenous pol II to the FLAG-RAP74-bound M2 resin, strongly suggesting that the RAP30-binding region of RPB5 inhibited the association of TFIIF and pol II. The exposed domain of RPB5 interacts with RAP30 of TFIIF and is important for the association between pol II and TFIIF.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1059-1070
Author(s):  
Susie C Howard ◽  
Arelis Hester ◽  
Paul K Herman

Abstract The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription.


Sign in / Sign up

Export Citation Format

Share Document