The influence of water sorption on the development of setting shrinkage stress in traditional and resin-modified glass ionomer cements

1995 ◽  
Vol 11 (3) ◽  
pp. 186-190 ◽  
Author(s):  
Albert J. Feilzer ◽  
Afrodite I. Kakaboura ◽  
Anton J. de Gee ◽  
Carel L. Davidson
2006 ◽  
Vol 20 (4) ◽  
pp. 342-346 ◽  
Author(s):  
Daniela Francisca Gigo Cefaly ◽  
Linda Wang ◽  
Liliam Lucia Carrara Paes de Mello ◽  
Janaína Lima dos Santos ◽  
Jean Rodrigo dos Santos ◽  
...  

The Light Emitting Diodes (LED) technology has been used to photoactivate composite resins and there is a great number of published studies in this area. However, there are no studies regarding resin-modified glass-ionomer cements (RMGIC), which also need photoactivation. Therefore, the aim of this study was to evaluate water sorption of two RMGIC photoactivated with LED and to compare this property to that obtained with a halogen light curing unit. A resin composite was used as control. Five specimens of 15.0 mm in diameter x 1.0 mm in height were prepared for each combination of material (Fuji II LC Improved, Vitremer, and Filtek Z250) and curing unit (Radii and Optilight Plus) and transferred to desiccators until a constant mass was obtained. Then the specimens were immersed into deionized water for 7 days, weighed and reconditioned to a constant mass in desiccators. Water sorption was calculated based on weight and volume of specimens. The data were analyzed by two-way ANOVA and Tukey test (p < 0.05). Specimens photocured with LED presented significantly more water sorption than those photocured with halogen light. The RMGIC absorbed statistically significant more water than the resin composite. The type of light curing unit affected water sorption characteristics of the RMGIC.


Biomaterials ◽  
1997 ◽  
Vol 18 (4) ◽  
pp. 343-349 ◽  
Author(s):  
Widchaya Kanchanavasita ◽  
H.M. Anstice ◽  
Gavin J. Pearson

2021 ◽  
Author(s):  
Zuleikha Malik ◽  
Danial Qasim Butt ◽  
Zainab Qasim Butt ◽  
Nawshad Muhammad ◽  
Muhammad Kaleem ◽  
...  

2012 ◽  
Vol 17 (6) ◽  
pp. 154-159 ◽  
Author(s):  
Marcel M. Farret ◽  
Eduardo Martinelli de Lima ◽  
Eduardo Gonçalves Mota ◽  
Hugo Mitsuo S. Oshima ◽  
Gabriela Maguilnik ◽  
...  

OBJECTIVE: To evaluate the mechanical properties of three glass ionomers cements (GICs) used for band cementation in Orthodontics. METHODS: Two conventional glass ionomers (Ketac Cem Easy mix/3M-ESPE and Meron/Voco) and one resin modified glass ionomer (Multi-cure Glass ionomer/3M-Unitek) were selected. For the compressive strength and diametral tensile strength tests, 12 specimens were made of each material. For the microhardness test 15 specimens were made of each material and for the shear bond strength tests 45 bovine permanent incisors were used mounted in a self-cure acrylic resin. Then, band segments with a welded bracket were cemented on the buccal surface of the crowns. For the mechanical tests of compressive and diametral tensile strength and shear bond strength a universal testing machine was used with a crosshead speed of 1,0 mm/min and for the Vickers microhardness analysis tests a Microdurometer was used with 200 g of load during 15 seconds. The results were submitted to statistical analysis through ANOVA complemented by Tukey's test at a significance level of 5%. RESULTS: The results shown that the Multi-Cure Glass Ionomer presented higher diametral tensile strength (p < 0.01) and compressive strength greater than conventional GICs (p = 0.08). Moreover, Ketac Cem showed significant less microhardness (p < 0.01). CONCLUSION: The resin-modified glass ionomer cement showed high mechanical properties, compared to the conventional glass ionomer cements, which had few differences between them.


2004 ◽  
Vol 12 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Linda Wang ◽  
Marília Afonso Rabelo Buzalaf ◽  
Maria Teresa Atta

A dhesive systems associated to resin-modified glass ionomer cements are employed for the achievement of a higher bond strength to dentin. Despite this benefit, other properties should not be damaged. This study aimed at evaluating the short-time fluoride release of a resin-modified glass ionomer cement coated with two one-bottle adhesive systems in a pH cycling system. Four combinations were investigated: G1: Vitremer (V); G2: Vitremer + Primer (VP); G3: Vitremer + Single Bond (VSB) and G4: Vitremer + Prime & Bond 2.1 (VPB). SB is a fluoride-free and PB is a fluoride-containing system. After preparation of the Vitremer specimens, two coats of the selected adhesive system were carefully applied and light-cured. Specimens were immersed in demineralizing solution for 6 hours followed by immersion in remineralizing solution for 18 hours, totalizing the 15-day cycle. All groups released fluoride in a similar pattern, with a greater release in the beginning and decreasing with time. VP showed the greatest fluoride release, followed by V, with no statistical difference. VSB and VPB released less fluoride compared to V and VP, with statistical difference. Regardless the one-bottle adhesive system, application of coating decreased the fluoride release from the resin-modified glass ionomer cements. This suggests that this combination would reduce the beneficial effect of the restorative material to the walls around the restoration.


10.2341/05-13 ◽  
2006 ◽  
Vol 31 (2) ◽  
pp. 212-218 ◽  
Author(s):  
A. E. Souza-Gabriel ◽  
F. L. B. Amaral ◽  
J. D. Pécora ◽  
R. G. Palma-Dibb ◽  
S. A. M. Corona

Clinical Relevance Er:YAG laser adversely affected the adhesion of resin-modified glass ionomer cements to tooth structure and cannot be considered an alternative technique to the conventional turbine handpiece.


Sign in / Sign up

Export Citation Format

Share Document