95/01855 Pressure drop measurements on the shell side of a cylindrical shell-and-tube heat exchanger

1995 ◽  
Vol 36 (2) ◽  
pp. 126
1994 ◽  
Vol 15 (3) ◽  
pp. 42-56 ◽  
Author(s):  
T. PEKDEMIR ◽  
T. W. DAVIES ◽  
L. E. HASELER ◽  
A. D. DIAPER

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


Author(s):  
Guidong Chen ◽  
Jing Xu ◽  
Ming Zen ◽  
Qiuwang Wang

In order to improve heat transfer performance of conventional segmental baffled shell-and-tube heat exchangers (STHXs), the shell-and-tube heat exchanger with combined helical baffles (CMH-STHX) were invented. In the present study, the CMH-STHX is compared with three other STHXs which were set up with continuous helical baffles (CH-STHX), discontinuous helical baffles (DCH-STHX) and segmental baffles (SG-STHX), by Computational Fluid Dynamics method. The numerical results show that, for the same mass flow rate at the shell side, the overall pressure drop of the CMH-STHX is about 50% and 40% lower than that of SG-STHX and CH-STHX. The heat transfer coefficient of the CMH-STHX is between those of CH-STHX and DCH-STHX and it is 6.3% lower than that of SG-STHX. The heat transfer coefficient under unit pressure drop h/Δp is introduced to evaluate the comprehensive performance of STHXs. The h/Δp of the CMH-STHX is 7.5%, 6.5% and 87.4% higher on average than those of the CH-SHTX, DCH-STHX and SG-STHX. Furthermore, the total heat transfer rate of CMH-STHX is about 25% higher than that of SG-STHX for the same total pressure drop of shell side. Supported by these results, the new heat exchanger (CMH-STHX) may be used to replace the conventional shell-and-tube heat exchanger in industrial applications.


2013 ◽  
Vol 860-863 ◽  
pp. 754-757
Author(s):  
Can Zheng ◽  
Fei Wang ◽  
Yong Gang Lei

A new type of helical baffles heat exchanger is presented in this paper. Comparative study, through numerical simulation, was undertook between the new helical baffles heat exchanger and segmental baffle board heat exchanger in shell side flow and heat exchange characteristics. Fluid medium in the shell side is air. At the same velocity in the same flow conditions, pressure drop of helical baffles heat exchangers fell by an average of 26.8% compared with segmental baffle board heat exchangers, and the unit pressure drop of the heat transfer ratio of helical baffles heat exchanger increased by an average of 40.6%.


Author(s):  
Ragunath L ◽  
Mohanraj C ◽  
Suriya kumar S ◽  
Sasi Kumar S ◽  
Balamurugan C

The turn of events and execution enhancement of shell and tube heat exchanger is an issue of incredible test and part of arising early innovation. The exhibition enhancement would serve an extraordinary commitment to assuage the swelled working expenses just as energy emergency. This paper grandstands every one of the experimental outcomes got from the constant framework investigation in different working conditions. Further it addresses examination for a few shell-and-tube heat exchangers with segmental confounds with various point parametric variety. The framework distinguishing proof has been done utilizing CFD investigation. The consolidated outcomes as for same shell-side stream rate show that, the heat move co-proficient of the heat exchanger with astounds is higher than that of the heat exchanger without perplexes, while the shell-side pressing factor drop of the previous is even a lot of lower than that of the last mentioned. Further upgrade methods ought to be consolidated to improve shell-side heat move dependent on a similar stream rate. The near investigation of heat move coefficient per unit pressure drop shows that the Segmental Baffle Heat exchanger have critical execution advantage over Segmental Baffle Heat exchanger for similar mathematical arrangements.


Sign in / Sign up

Export Citation Format

Share Document