Numerical Simulation of a Shell-and-Tube Heat Exchanger with Special Form Helical Baffles

2013 ◽  
Vol 860-863 ◽  
pp. 754-757
Author(s):  
Can Zheng ◽  
Fei Wang ◽  
Yong Gang Lei

A new type of helical baffles heat exchanger is presented in this paper. Comparative study, through numerical simulation, was undertook between the new helical baffles heat exchanger and segmental baffle board heat exchanger in shell side flow and heat exchange characteristics. Fluid medium in the shell side is air. At the same velocity in the same flow conditions, pressure drop of helical baffles heat exchangers fell by an average of 26.8% compared with segmental baffle board heat exchangers, and the unit pressure drop of the heat transfer ratio of helical baffles heat exchanger increased by an average of 40.6%.

2021 ◽  
Vol 16 ◽  
pp. 145-152
Author(s):  
Farid Ahmed ◽  
Md Minaruzzaman Sumon ◽  
Muhtasim Fuad ◽  
Ravi Gugulothu ◽  
AS Mollah

Heat exchangers are almost used in every industry. Among them, shell and tube heat exchangers are covering around 32% of the total heat exchanger. Numerical simulation of the Computational models is playing an important role for the prototypes including the Heat Exchanger Models for the improvement in modeling. In this study, the CFD analysis of parallel and counter flow shell and tube heat exchanger was performed. Following project, looked into the several aspects and these are the temperature, velocity, and pressure drop and turbulence kinetic energy along with the heat exchanger length. Hot water was placed in tube side and cold water was placed in shell side of the heat exchanger. Shell side cold temperature was increasing along the heat exchanger length. On the other side, tube side hot water temperature was decreasing along the tube length. This effect was more significance in counter flow rather than the parallel flow. Velocity was more fluctuating in the shell side due to presence of the baffles. Also following the same reason, pressure drop was higher in the shell side cold water rather than the tube side hot water. To measure the turbulence effect, turbulence kinetic energy was determined. Turbulence was decreasing first part of the shell and tube heat exchanger. But, it was increasing along through the rest part heat exchanger. All these observations and the outcomes are evaluated and then further analyzed


2020 ◽  
pp. 293-293
Author(s):  
Ahmet Aydin ◽  
Halit Yaşar ◽  
Tahsin Engin ◽  
Ekrem Büyükkaya

The Shell-and-tube type heat exchangers have long been widely used in many fields of industry. These types of heat exchangers are generally easy to design, manufacturing and maintenance, but require relatively large spaces to install. Therefore the optimization of such heat exchangers from thermal and economical points of view is of particular interest. In this article, an optimization procedure based on the minimum total cost (initial investment plus operational costs) has been applied. Then the flow analysis of the optimized heat exchanger has been carried out to reveal possible flow field and temperature distribution inside the equipment using computational fluid dynamics. The experimental results were compared with computational fluid dynamics analyses results. It has been concluded that the baffles play an important role in the development of the shell side flow field. This prompted us to investigate new baffle geometries without compromising from the overall thermal performance. It has been found that the heat exchanger with the new baffle design gives rise to considerably lower pressure drops in the shell side, which in turn reducing operating cost. The new baffle design is particularly well suited for shell-and-tube heat exchangers, where a viscous fluid flows through shell side with/out phase change.


Author(s):  
Ragunath L ◽  
Mohanraj C ◽  
Suriya kumar S ◽  
Sasi Kumar S ◽  
Balamurugan C

The turn of events and execution enhancement of shell and tube heat exchanger is an issue of incredible test and part of arising early innovation. The exhibition enhancement would serve an extraordinary commitment to assuage the swelled working expenses just as energy emergency. This paper grandstands every one of the experimental outcomes got from the constant framework investigation in different working conditions. Further it addresses examination for a few shell-and-tube heat exchangers with segmental confounds with various point parametric variety. The framework distinguishing proof has been done utilizing CFD investigation. The consolidated outcomes as for same shell-side stream rate show that, the heat move co-proficient of the heat exchanger with astounds is higher than that of the heat exchanger without perplexes, while the shell-side pressing factor drop of the previous is even a lot of lower than that of the last mentioned. Further upgrade methods ought to be consolidated to improve shell-side heat move dependent on a similar stream rate. The near investigation of heat move coefficient per unit pressure drop shows that the Segmental Baffle Heat exchanger have critical execution advantage over Segmental Baffle Heat exchanger for similar mathematical arrangements.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
J. F. Zhou ◽  
Y. Li ◽  
B. Q. Gu ◽  
C. L. Shao

Shell-and-tube heat exchangers are the most common type of heat exchangers in oil refineries and other large chemical processes. In this manuscript, we demonstrate that the shell-side flow in a cylindrical shell was not as homogeneous as that in a rectangular shell. According to the periodic flow field and the arrangement of tubes in the rectangular shell, the solid-fluid coupling heat transfer model consisting of a single tube section and the outer and inner fluids was developed to represent the whole heat exchanger. Using this model, the relationship among four temperatures, namely the inlet and outlet temperatures of tube-side fluid and the upstream and downstream temperatures of shell-side fluid, was established. By dividing each tube into several tube sections at the sites of baffles, a method for predicting the temperature field of the rectangular shell-and-tube heat exchanger was proposed. Based on the node temperature correlation, all the node temperatures were obtained by iterative computation using the established relationship between the four temperatures and the operating conditions. It was found that the temperature distribution of the fluid in tube was approximately linear along axial direction, but the temperature of tube showed nonlinear regularity. The axial deformation compatibility condition for the tube bundle and shell was considered when resolving the stresses in tubes. For the model established in this paper, the mean temperature of the tube at lower position was found to be larger than that at higher position; hence the thermal expansion of the tube at the lower end is larger. In the case the tube-side fluid was heated, all tubes were pulled because of the larger axial thermal expansion of shell, and the stress in the tube with higher temperature is smaller because of the smaller strain.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


2021 ◽  
Author(s):  
praveen math

Abstract Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. They are also widely used in process applications as well as the refrigeration and air conditioning industry. The robustness and medium weighted shape of Shell and Tube heat exchangers make them well suited for high pressure operations. The aim of this study is to experiment, validate and to provide design suggestion to optimize the shell and tube heat exchanger (STHE). The heat exchanger is made of acrylic material with 2 baffles and 7 tubes made of stainless steel. Hot fluid flows inside the tube and cold fluid flows over the tube in the shell. 4 K-type thermocouples were used to read the hot and cold fluids inlet and outlet temperatures. Experiments were carried out for various combinations of hot and cold water flow rates with different hot water inlet temperatures. The flow conditions are limited to the lab size model of the experimental setup. A commercial CFD code was used to study the thermal and hydraulic flow field inside the shell and tubes. CFD methodology is developed to appropriately represent the flow physics and the procedure is validated with the experimental results. Turbulent flow in tube side is observed for all flow conditions, while the shell side has laminar flow except for extreme hot water temperatures. Hence transition k-kl-omega model was used to predict the flow better for transition cases. Realizable k- epsilon model with non-equilibrium wall function was used for turbulent cases. Temperature and velocity profiles are examined in detail and observed that the flow remains almost uniform to the tubes thus limiting heat transfer. Approximately 2/3 rd of the shell side flow does not surround the tubes due to biased flow contributing to reduced overall heat transfer and increased pressure loss. On the basis of these findings an attempt has been made to enhance the heat transfer by inducing turbulence in the shel l side flow. The two baffles were rotated in opposite direction to each other to achieve more circulation in the shell side flow and provide more contact with tube surface. Various positions of the baffles were simulated and studied using CFD analysis and th e results are summarized with respect to heat transfer and pressure loss.


2012 ◽  
Vol 560-561 ◽  
pp. 156-160
Author(s):  
Lin Ping Lu ◽  
Liang Ying

The experiments on heat transfer coefficient, pressure drop and thermal stress were done to heat exchangers with corrugated tubes and staight tubes. By analyising and comparing the heat transfer coeffient, pressure drop in tube side and shell side and axial force and stress, some conclusions can be conducted that the corrugated tube heat exchanger has better heat transfer coeffient, higher pressure drop and much lower stress caused by temperatur difference, also, it has obvious advantages under the circumstance of low Reynolds number and high temperature difference.


Author(s):  
Ender Ozden ◽  
I˙lker Tarı

A shell-and-tube heat exchanger is modeled and numerically analyzed using a commercial finite volume CFD package. The heat exchanger is small, has a single shell and a single tube pass, and its shell side is baffled. The baffles are 25% or 36% cut single-segmental baffles. Tube layout is the staggered layout with a triangular pitch. There is no leakage from baffle orifices and no gap between the baffles and the shell. It is observed that the shell side flow and the temperature distributions are very sensitive to modeling choices such as mesh, order of discretization and turbulence modeling. Various turbulence models are tried for the first and second order discretizations using two different mesh densities. CFD predictions of shell side pressure drop and overall heat transfer coefficient are obtained and compared with Kern and Bell-Delaware method results. After selecting the best modeling approach, the sensitivity of the results to flow rates and the baffle spacing is investigated. It is observed that the flow and temperature fields obtained from CFD simulations can provide valuable information about the parts of the heat exchanger design that need improvement. Correlation based approaches may indicate the existence of the weakness but CFD simulations can also pin point the source and the location of it. Using CFD together with experiments may speed up the design process and may improve the final design.


1994 ◽  
Vol 15 (3) ◽  
pp. 42-56 ◽  
Author(s):  
T. PEKDEMIR ◽  
T. W. DAVIES ◽  
L. E. HASELER ◽  
A. D. DIAPER

Sign in / Sign up

Export Citation Format

Share Document