96/00620 Applying H-infinity and control methods to wind turbines using MATLAB

1996 ◽  
Vol 37 (1) ◽  
pp. 38
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5906
Author(s):  
Sławomir Karyś ◽  
Paweł Stawczyk

This paper presents AC/DC converters for cost-effective small wind turbine systems. The analysis focuses on reliable, sensor-less, and low-cost solutions. A recently developed type of the three phase AC/DC two-switch converter is compared, for the first time, using simulations and experiments, with two other converters. The operating principles and control methods are discussed. Simulation results are verified experimentally and interesting conclusions are drawn. It is shown that less known converters are also attractive solutions for use in small wind turbines.


2021 ◽  
Vol 226 ◽  
pp. 108826
Author(s):  
Chenguang Liu ◽  
Junlin Qi ◽  
Xiumin Chu ◽  
Mao Zheng ◽  
Wei He

2021 ◽  
Vol 787 (1) ◽  
pp. 012027
Author(s):  
Yudian Li ◽  
Jiajie Dong ◽  
Kai Fei ◽  
Hao Song ◽  
Zeyi Li ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 37
Author(s):  
Vaughan Murphy ◽  
Brandon P. R. Edmonds ◽  
Ana Luisa Trejos

Twisted coiled actuators (TCAs) are a type of soft actuator made from polymer fibres such as nylon sewing thread. As they provide motion in a compact, lightweight, and flexible package, they provide a solution to the actuation of wearable mechatronic devices for motion assistance. Their limitation is that they provide low total force, requiring them to actuate in parallel with multiple units. Previous literature has shown that the force and stroke production can be improved by incorporating them into fabric meshes. A fabric mesh could also improve the contraction efficiency, strain rate, and user comfort. Therefore, this study focused on measuring these performance metrics for a set of TCAs embedded into a woven fabric mesh. The experimental results show that the stroke of the actuators scaled linearly with the number of activated TCAs, achieving a maximum applied force of 11.28 N, a maximum stroke of 12.23%, and an efficiency of 1.8%. Additionally, two control methods were developed and evaluated, resulting in low overshoot and steady-state error. These results indicate that the designed actuators are viable for use in wearable mechatronic devices, since they can scale to meet different requirements, while being able to be accurately controlled with minimal additional components.


Sign in / Sign up

Export Citation Format

Share Document