Indoor air pollution and acute respiratory infections in children

The Lancet ◽  
1992 ◽  
Vol 339 (8790) ◽  
pp. 396-398 ◽  
2012 ◽  
Vol 506 ◽  
pp. 23-26
Author(s):  
P.A.F. Rodrigues ◽  
S.I.V. Sousa ◽  
Maria José Geraldes ◽  
M.C.M. Alvim-Ferraz ◽  
F.G. Martins

Several factors affect the indoor air quality, among which ventilation, human occupancy, cleaning products, equipment and material; they might induce the presence of aerosols (or bioaerosols in the presence of biological components) nitrogen oxides, ozone, carbon monoxide and dioxide, volatile organic compounds, radon and microorganisms. Microbiological pollution involves hundreds of bacteria and fungi species that grow indoors under specific conditions of temperature and humidity. Exposure to microbial contaminants is clinically associated with allergies, asthma, immune responses and respiratory infections, such as Legionnaires Disease and Pontiac Feaver, which are due to contamination byLegionella pneumophila. Legionnaire's Disease has increased over the past decade, because of the use of central air conditioning. In places such as homes, kindergartens, nursing homes and hospitals, indoor air pollution affects population groups that are particularly vulnerable because of their health status or age, making indoor air pollution a public health issue of high importance. Therefore, the implementation of preventive measures, as the application of air filters, is fundamental. Currently, High Efficiency Particulate Air (HEPA) filters are the most used to capture microorganisms in ventilation, filtration and air conditioning systems; nevertheless, as they are not completely secure, new filters should be developed. This work aims to present how the efficiency of a textile nanostructure in a non-woven material based on synthetic textiles (high hydrophobic fibers) incorporating appropriate biocides to controlLegionella pneumophila, is going to be measured. These bioactive structures, to be used in ventilation systems, as well as in respiratory protective equipment, will reduce the growth of microorganisms in the air through bactericidal or bacteriostatic action. The filter nanostructure should have good air permeability, since it has to guarantee minimum flows of fresh air for air exchange as well as acceptable indoor air quality.


Author(s):  
Sri Neneng Sundari

Abstract: Motor Vehicle Pollution Doesn't Affect Against ISPA Disease. Air pollution is a problem that often occurs in the big cities, one of which is in the city of Bandung. Air pollution can cause various diseases from the most important ones namely respiratory, cardiovascular diseases, and to other diseases that attack certain organs. Based on the results of the study, air pollution from the transportation sector reached 60 percents, therefore this study will highlight the impact of motor vehicle air pollution on human’s health in Bandung, especially Acute Respiratory Infections (ARI), because the disease is the 2nd largest of the 20 biggest types of diseases in Community Health Centers / Puskesmas in Bandung. From several air pollutant parameters resulting from vehicle exhaust emissions, SO2 compounds were studied, because SO2 can cause irritation to the respiratory tract. This research using descriptive method, it can be concluded that air pollution caused by vehicle exhaust emission gas doesn’t directly affect the occurrence of Acute Respiratory Infections (ARI) in Bandung. The disease can occur due to other factors not examined in this paper, due to indoor air pollution, cigarette smoke pollution, industrial pollution or the continued use of synthetic chemicals.


Sign in / Sign up

Export Citation Format

Share Document