Metabolic, physiological and kinetic aspects of the alcoholic fermentation of whey permeate by Kluyveromyces fragilis NRRL 665 and Kluyveromyces lactis NCYC 571

1985 ◽  
Vol 7 (6) ◽  
pp. 287-294 ◽  
Author(s):  
Patrice Vienne ◽  
Urs von Stockar
2015 ◽  
Vol 82 (3) ◽  
pp. 356-364 ◽  
Author(s):  
Beatriz Padilla ◽  
Florencia Frau ◽  
Ana Isabel Ruiz-Matute ◽  
Antonia Montilla ◽  
Carmela Belloch ◽  
...  

β-Galactosidases from Kluyveromyces lactis and Kluyveromyces marxianus isolated from artisanal ewes’ milk cheeses, were used to transgalactosylate lactose from cheese whey permeate (WP). The content of galactooligosaccharides (GOS) obtained by transgalactosylation was comparable with that formed using pure lactose as substrate. In order to obtain a mixture with higher prebiotic oligosaccharide content, isomerisation of the transgalactosylated WP was carried out using sodium aluminate as catalyst. The transgalactosylated mixtures at 6 h of reaction contained amounts of prebiotic carbohydrates (tagatose, lactulose, GOS and oligosaccharides derived from lactulose, OsLu) close to 50 g/100 g of total carbohydrates for all the strains tested, corresponding to 322 g prebiotics/kg whey permeate. Thus, the suitability of this methodology to produce mixtures of dietary non-digestible carbohydrates with prebiotic properties from WP has been demonstrated, which is interesting for the food industry since it increases the value and the applicability of this by-product from cheese manufacture.


2019 ◽  
Vol 41 (24) ◽  
pp. 3210-3218 ◽  
Author(s):  
Fábio Coelho Sampaio ◽  
Janaína Teles de Faria ◽  
Milena Fernandes da Silva ◽  
Ricardo Pinheiro de Souza Oliveira ◽  
Attilio Converti

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Michele Dutra Rosolen ◽  
Adriano Gennari ◽  
Giandra Volpato ◽  
Claucia Fernanda Volken de Souza

This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C) and Kluyveromyces lactis (at temperatures of 10 and 37°C) β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C), at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Justin Fisk Marcus ◽  
Timothy A. DeMarsh ◽  
Samuel David Alcaine

Dairy manufacturing generates whey by-products, many of them considered waste; others, such as whey permeate, a powder high in lactose and minerals from deproteinated whey, have unrealized potential. This study identified yeast species capable of utilizing lactose from whey permeate to produce ethanol or organic acids, and identified fungal species that reduced the acidity of whey by-products. Reconstituted whey permeate was fermented anaerobically or aerobically for 34 days, using species from Cornell University’s Food Safety Lab, Alcaine Research Group, and Omega Labs. Yeast species: Kluyveromyces marxianus, Kluyveromyces lactis, Dekkera anomala, Brettanomyces claussenii, Brettanomyces bruxellensis; mold species: Mucor genevensis and Aureobasidium pullulans. Density, pH, cell concentrations, organic acids, ethanol, and sugar profiles were monitored. Under anoxic conditions, K. marxianus exhibited the greatest lactose utilization and ethanol production (day 20: lactose non-detectable; 4.52% ± 0.02 ethanol). Under oxic conditions, D. anomala produced the most acetic acid (day 34: 9.18 ± 3.38 g/L), and A. pullulans utilized the most lactic acid, increasing the fermentate’s pH (day 34: 0.26 ± 0.21 g/L, pH: 7.91 ± 0.51). This study demonstrates that fermentation of whey could produce value-added alcoholic or organic acid beverages, or increase the pH of acidic by-products, yielding new products and increasing sustainability.


1981 ◽  
Vol 44 (8) ◽  
pp. 588-590 ◽  
Author(s):  
B. J. DEMOTT ◽  
F. A. DRAUGHON ◽  
P. J. HERALD

Kluyveromyces fragilis was more suitable than Candida pseudotropicalis or Kluyveromyces lactis for production of ethanol from whey. Direct-acid-set cottage cheese whey and the supernatant fluid resulting from heat treatment of the whey at 95 C for 20 min showed similar rates of fermentation when inoculated with K. fragilis. Inoculation rates of 10, 12 and 14 ml of active K. fragilis culture per 100 ml of media were not significantly different in rate of ethanol production. Samples incubated with K. fragilis at 35, 37, 40 and 42 C showed more rapid reduction in specific gravity than samples incubated at room temperature or 30 C. Lactose conversion in whey was 83% complete and in whey supernatant fluid, 77%.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7388
Author(s):  
Karolina Drężek ◽  
Joanna Kozłowska ◽  
Anna Detman ◽  
Jolanta Mierzejewska

2-Phenylethanol (2-PE) is an alcohol with a rosy scent and antimicrobial activity, and therefore, it is widely used in the food and cosmetic industries as an aroma and preservative. This work was aimed to draw up a technology for 2-PE bioproduction on whey permeate, which is waste produced by the dairy industry, rich in lactase and proteins. Its composition makes it a harmful waste to dispose of; however, with a properly selected microorganism, it could be converted to a value-added product. Herein, two yeast Kluyveromyces marxianus strains and one Kluyveromyces lactis, isolated from dairy products, were tested for 2-PE production, firstly on standard media and then on whey permeate based media in batch cultures. Thereafter, the 2-PE bioproduction in a continuous system in a 4.8 L bioreactor was developed, and subsequently, the final product was recovered from culture broth. The results showed that the yield of 2-PE production increased by 60% in the continuous culture compared to batch culture. Together with a notable reduction of chemical oxygen demand for whey permeate, the present study reports a complete, effective, and environmentally friendly strategy for 2-PE bioproduction with a space-time yield of 57.5 mg L−1 h−1.


Sign in / Sign up

Export Citation Format

Share Document