scholarly journals Development of a Continuous System for 2-Phenylethanol Bioproduction by Yeast on Whey Permeate-Based Medium

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7388
Author(s):  
Karolina Drężek ◽  
Joanna Kozłowska ◽  
Anna Detman ◽  
Jolanta Mierzejewska

2-Phenylethanol (2-PE) is an alcohol with a rosy scent and antimicrobial activity, and therefore, it is widely used in the food and cosmetic industries as an aroma and preservative. This work was aimed to draw up a technology for 2-PE bioproduction on whey permeate, which is waste produced by the dairy industry, rich in lactase and proteins. Its composition makes it a harmful waste to dispose of; however, with a properly selected microorganism, it could be converted to a value-added product. Herein, two yeast Kluyveromyces marxianus strains and one Kluyveromyces lactis, isolated from dairy products, were tested for 2-PE production, firstly on standard media and then on whey permeate based media in batch cultures. Thereafter, the 2-PE bioproduction in a continuous system in a 4.8 L bioreactor was developed, and subsequently, the final product was recovered from culture broth. The results showed that the yield of 2-PE production increased by 60% in the continuous culture compared to batch culture. Together with a notable reduction of chemical oxygen demand for whey permeate, the present study reports a complete, effective, and environmentally friendly strategy for 2-PE bioproduction with a space-time yield of 57.5 mg L−1 h−1.

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Justin Fisk Marcus ◽  
Timothy A. DeMarsh ◽  
Samuel David Alcaine

Dairy manufacturing generates whey by-products, many of them considered waste; others, such as whey permeate, a powder high in lactose and minerals from deproteinated whey, have unrealized potential. This study identified yeast species capable of utilizing lactose from whey permeate to produce ethanol or organic acids, and identified fungal species that reduced the acidity of whey by-products. Reconstituted whey permeate was fermented anaerobically or aerobically for 34 days, using species from Cornell University’s Food Safety Lab, Alcaine Research Group, and Omega Labs. Yeast species: Kluyveromyces marxianus, Kluyveromyces lactis, Dekkera anomala, Brettanomyces claussenii, Brettanomyces bruxellensis; mold species: Mucor genevensis and Aureobasidium pullulans. Density, pH, cell concentrations, organic acids, ethanol, and sugar profiles were monitored. Under anoxic conditions, K. marxianus exhibited the greatest lactose utilization and ethanol production (day 20: lactose non-detectable; 4.52% ± 0.02 ethanol). Under oxic conditions, D. anomala produced the most acetic acid (day 34: 9.18 ± 3.38 g/L), and A. pullulans utilized the most lactic acid, increasing the fermentate’s pH (day 34: 0.26 ± 0.21 g/L, pH: 7.91 ± 0.51). This study demonstrates that fermentation of whey could produce value-added alcoholic or organic acid beverages, or increase the pH of acidic by-products, yielding new products and increasing sustainability.


UNICIÊNCIAS ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 31
Author(s):  
Alessandra Bosso ◽  
Adriana Aparecida Bosso Tomal ◽  
Josemeyre Bonifácio Da Silva ◽  
Hélio Hiroshi Suguimoto

Aproximadamente 75 % da população mundial apresenta intolerância à lactose, doença congênita caracterizada pela incapacidade de absorver o açúcar presente no leite e seus derivados lácteos. Esta incapacidade se deve basicamente a inatividade ou baixa atividade da enzima intestinal β-galactosidase. Até o presente momento, o tratamento para as pessoas intolerantes à lactose inclui evitar o consumo de leite ou fazer uso de leite e produtos lácteos com ausência ou teor reduzido de lactose além do uso da enzima lactase já disponível comercialmente. A enzima β-galactosidase é responsável pela hidrólise das ligações galactosídicas da lactose em seus monossacarídeos, glicose e galactose. É produzida principalmente em microrganismos incluindo fungos filamentosos, bactérias e leveduras. Um dos principais requisitos para produção da enzima a partir de microrganismo é determinar a melhor composição nutricional do meio de fermentação. O soro de queijo é fonte abundante de carbono tendo a lactose como seu principal componente e, portanto, pode ser usado por microrganismos, como meio de cultivo para produção de β-galactosidase. O uso do soro de queijo com esta finalidade pode contribuir para diminuição do impacto econômico e ambiental causado pela sua produção excedente além de, se tornar um produto com valor agregado. Palavras-chave: Intolerância à Lactose. Soro de Queijo. Fermentação. Microrganismos. Abstract75% of the world population is lactose intolerant, a congenital disease characterized by an inability to absorb the sugar present in milk and its dairy products. This inability is basically due to inactivity or low activity of the intestinal β-galactosidase enzyme. The treatment includes avoiding the consumption of milk or making use of milk and dairy products lacking or reduced lactose content. The enzyme β-galactosidase is responsible for the hydrolysis of the galactosidic bonds of lactose in glucose and galactose. It is found mainly in microorganisms including fungi, bacteria and yeast. One of the main requirements for the production of the enzyme from microorganism is to determine the best nutritional composition of the fermentation medium. Cheese whey is an abundant source of carbon having lactose as its main component and therefore can be used as a medium for the cultivation of microorganisms for the production of β-galactosidase. The use of cheese whey for the production of β-galactosidase may contribute to the reduction of the economic and environmental impact caused by its surplus production, in addition to becoming a value-added product. Keywords: Lactose Intolerance. Cheese Whey. Fermentation. Microorganism.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6031-6056
Author(s):  
Crisel A. Mejía-Rivas ◽  
Ana M. Bailón-Salas ◽  
Luis A. De la Peña-Arellano ◽  
María D. J. Rodríguez-Rosales ◽  
Luis A. Ordaz-Díaz

Agro-industrial waste is generated in large quantities, producing negative environmental impacts. For instance, in the distillation process of vinasses, up to 15 L are produced per alcohol produced. Therefore, it is necessary to search for ecological alternatives. Biological treatments are not recommended because vinasses contain compounds, such as melanoidins, which exert inhibitory activity against microorganisms. Thanks to this activity, melanoidins could be removed, recovered, and become a value-added product. In this study, Opuntia ficus-indica (OFI) mucilage, a natural biopolymer as coadjuvant, was used to improve the coagulation-flocculation process in the treatment of real samples of mezcal vinasses, after evaluating the individual effect of aluminum sulfate and ferric chloride. It was possible to eliminate 90% of color using ferric chloride, showing better removals than aluminum sulfate. However, the effect of ferric chloride plus OFI mucilage generated an adverse effect because the removal was under 17%. The individual effect of ferric chloride for chemical oxygen demand (COD) removal was 28%. This removal was improved by the addition of OFI mucilage, as it was able to increase removal to 84%. The natural coadjuvant was shown to be effective in the COD removal in the treatment of mezcal vinasse using the coagulation-flocculation process.


2018 ◽  
Author(s):  
Younghwan Cha ◽  
Jung-In Lee ◽  
Panpan Dong ◽  
Xiahui Zhang ◽  
Min-Kyu Song

A novel strategy for the oxidation of Mg-based intermetallic compounds using CO<sub>2</sub> as an oxidizing agent was realized via simple thermal treatment, called ‘CO2-thermic Oxidation Process (CO-OP)’. Furthermore, as a value-added application, electrochemical properties of one of the reaction products (carbon-coated macroporous silicon) was evaluated. Considering the facile tunability of the chemical/physical properties of Mg-based intermetallics, we believe that this route can provide a simple and versatile platform for functional energy materials synthesis as well as CO<sub>2</sub> chemical utilization in an environment-friendly and sustainable way.


Sign in / Sign up

Export Citation Format

Share Document