Some effects of copper on the veliger larvae of the mussel Mytilus edulis and the Scallop Pecten maximus (Mollusca, Bivalvia)

1987 ◽  
Vol 21 (4) ◽  
pp. 299-309 ◽  
Author(s):  
A.R. Beaumont ◽  
G. Tserpes ◽  
M.D. Budd
2009 ◽  
Vol 6 (7) ◽  
pp. 1209-1227 ◽  
Author(s):  
P. S. Freitas ◽  
L. J. Clarke ◽  
H. Kennedy ◽  
C. A. Richardson

Abstract. Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS) profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves Pecten maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the P. maximus shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells.


2013 ◽  
Vol 10 (10) ◽  
pp. 6161-6184 ◽  
Author(s):  
S. Andersen ◽  
E. S. Grefsrud ◽  
T. Harboe

Abstract. As a result of high anthropogenic CO2 emissions, the concentration of CO2 in the oceans has increased, causing a decrease in pH, known as ocean acidification (OA). Numerous studies have shown negative effects on marine invertebrates, and also that the early life stages are the most sensitive to OA. We studied the effects of OA on embryos and unfed larvae of the great scallop (Pecten maximus Lamarck), at pCO2 levels of 469 (ambient), 807, 1164, and 1599 μatm until seven days after fertilization. To our knowledge, this is the first study on OA effects on larvae of this species. A drop in pCO2 level the first 12 h was observed in the elevated pCO2 groups due to a discontinuation in water flow to avoid escape of embryos. When the flow was restarted, pCO2 level stabilized and was significantly different between all groups. OA affected both survival and shell growth negatively after seven days. Survival was reduced from 45% in the ambient group to 12% in the highest pCO2 group. Shell length and height were reduced by 8 and 15%, respectively, when pCO2 increased from ambient to 1599 μatm. Development of normal hinges was negatively affected by elevated pCO2 levels in both trochophore larvae after two days and veliger larvae after seven days. After seven days, deformities in the shell hinge were more connected to elevated pCO2 levels than deformities in the shell edge. Embryos stained with calcein showed fluorescence in the newly formed shell area, indicating calcification of the shell at the early trochophore stage between one and two days after fertilization. Our results show that P. maximus embryos and early larvae may be negatively affected by elevated pCO2 levels within the range of what is projected towards year 2250, although the initial drop in pCO2 level may have overestimated the effect of the highest pCO2 levels. Future work should focus on long-term effects on this species from hatching, throughout the larval stages, and further into the juvenile and adult stages.


2013 ◽  
Vol 10 (2) ◽  
pp. 3281-3310 ◽  
Author(s):  
S. Andersen ◽  
E. S. Grefsrud ◽  
T. Harboe

Abstract. As a result of high anthropogenic emission of CO2, partial pressure of carbon dioxide (pCO2) in the oceans has increased causing a drop in pH, known as ocean acidification (OA). Numerous studies have shown negative effects on marine invertebrates, and that the early life stages are the most sensitive to OA. We studied the effects on embryo and larvae of great scallop (Pecten maximus L.), using mean pCO2-levels of 477 (ambient), 821, 1184, and 1627 ppm. OA affected both survival and shell growth negatively after seven days. Growth was reduced with 5–10% when pCO2 increased from ambient 477 ppm to 1627 ppm, and survival based on egg number was reduced from 40.4% in the ambient group to 10.7% in the highest pCO2-group. Larvae/embryos stained with calcein one day after fertilization, showed fluorescence in the newly formed shell area indicating calcification of the shell already at the trochophore stage. Shell hinge deformities were observed at elevated pCO2-levels in trochophore larvae after two days. After seven days, deformities in both shell hinge and shell edge were observed in veliger larvae at elevated pCO2-levels. Although the growth showed a moderate reduction, survival rate and increased amount of deformed larvae indicates that P. Maximus larvae are affected by elevated pCO2 levels within the range of what is projected for the next century.


Author(s):  
Kobina Yankson

INTRODUCTIONYonge (1962) suggests a possible universal occurrence of byssal apparatus in the post-larval spat of bivalves. Subsequent studies have revealed that the byssus thread secreted by the post-larval byssal apparatus of many bivalves is involved in settlement as well as migration by means of bysso-pelagic drifting (Sigurdsson, Titman & Davis, 1976; Blok & Tan-Maas, 1977; Board, 1983). Recent studies on the byssus and other foot glands in the early stages of bivalves have included Ostrea edulis (Cranfield, 1973 a, b, c); Pecten maximus (Gruffydd, Lane & Beaumont, 1975); Mytilus edulis (Lane & Nott, 1975; Lane, Nott & Crisp, 1982); and Chlamys varia L. (Gruffydd, Budiman & Nott, 1979)


Author(s):  
Ll. D. Gruffydd ◽  
D. J. W. Lane ◽  
A. R. Beaumont

A survey by Yonge (1962) of the byssal apparatus in the Bivalvia indicates that the formation of byssus is a larval characteristic which may or may not be retained in the adult. Some species such as the mussel, Mytilus edulis, retain the byssal attachment but have the ability to break the byssus and move over a limited area. Others, such as the scallop, Pecten maximus, lose the byssus entirely, become unattached and move by swimming. Yet others, such as the oyster, Ostrea edulis, relinquish all mobility at metamorphosis by cementing the shell to the substratum, and after metamorphosis lose all trace of the foot. Ostrea, Mytilus and Pecten therefore encompass a wide variety of life styles in the adult and are chosen as examples for detailed comparison of the byssus forming glands and other foot glands in the pediveligers.


Sign in / Sign up

Export Citation Format

Share Document