Database management concepts in computer-aided design optimization

1986 ◽  
Vol 8 (2) ◽  
pp. 88-97 ◽  
Author(s):  
T. Sreekanta Murthy ◽  
J.S. Arora
Author(s):  
Dipendra K. Sinha ◽  
Michael T. McDonald

Abstract The paper describes a belt design package which works from within a commercial Computer Aided Design and Drafting package (AutoCAD) environment and utilizes FORTRAN programs for design and selection of lowest weight components for the drive system. The components used in the process are available as stock items in U.S.A. The relevant information on these products is stored in commercial database management systems such as EXCEL and LOTUS 1-2-3. Output from the package consists of scaled drawing and tabular specifications.


2017 ◽  
Vol 84 (6) ◽  
Author(s):  
Ming Li ◽  
Yangjun Luo ◽  
HuaPing Wu ◽  
Kai Zhu ◽  
Yanzhuang Niu ◽  
...  

For both polyimide membranes in aerospace and graphene membranes in nanoelectronics with surface accuracy requirements, wrinkles due to the extreme out-of-plane flexibility yield inverse influences on the properties and applications of membranes. In this study, on the basis of discrete topology optimization, we propose a prenecking strategy by adopting elliptical free edges to suppress the stretch-induced wrinkling. This prenecking strategy with the computer-aided-design (CAD)-ready format is versatile to eliminate wrinkles in stretched membranes with clamped ends and achieve wrinkle-free performances. The wrinkle-free capability of the prenecking strategy, capable of satisfying the shape accuracy requirements, indicates that by suffering insignificant area loss, concerning of wrinkling problems in membranes is no further required. As compared with the existing researches focusing on studying wrinkling behaviors, the prenecking strategy offers a promising solution to the stretch-induced wrinkling problem by eliminating wrinkles through design optimization.


Author(s):  
Shubham Upadhyaya ◽  
◽  
Rakesh Chander Saini ◽  
Ramakant Rana

In this paper, our aim is to design and built a lightweight single-piston floating caliper, without compromising the performance. The aim is to design a caliper as simple as possible so that the manufacturing cost would be low. Mounting position can also be varied in this design. To make the caliper lighter it is necessary to remove material, Aluminium 7075 is used as the material, and Asbestos is taken as the brake pad material. To maintain the stiffness the material has to be used in a more efficient way. A computer-aided design model of a brake caliper is created in Solidworks and analyzed for stress and deformation in ANSYS Workbench.


Author(s):  
Joel Guerrero ◽  
Luca Mantelli ◽  
Sahrish B. Naqvi

In this manuscript, an automated framework dedicated to design space exploration and design optimization studies is presented. The framework integrates a set of numerical simulation, computer-aided design, numerical optimization, and data analytics tools using scripting capabilities. The tools used are open-source and freeware, and can be deployed on any platform. The main feature of the proposed methodology is the use of a cloud-based parametrical computer-aided design application, which allows the user to change any parametric variable defined in the solid model. We demonstrate the capabilities and flexibility of the framework using computational fluid dynamics applications; however, the same workflow can be used with any numerical simulation tool (e.g., a structural solver or a spread-sheet) that is able to interact via a command line interface or using scripting languages. We conduct design space exploration and design optimization studies using quantitative and qualitative metrics, and to reduce the high computing times and computational resources intrinsic to these kinds of studies, concurrent simulations and surrogate-based optimization are used.


Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 36 ◽  
Author(s):  
Joel Guerrero ◽  
Luca Mantelli ◽  
Sahrish B. Naqvi

In this manuscript, an automated framework dedicated to design space exploration and design optimization studies is presented. The framework integrates a set of numerical simulation, computer-aided design, numerical optimization, and data analytics tools using scripting capabilities. The tools used are open-source and freeware, and can be deployed on any platform. The main feature of the proposed methodology is the use of a cloud-based parametrical computer-aided design application, which allows the user to change any parametric variable defined in the solid model. We demonstrate the capabilities and flexibility of the framework using computational fluid dynamics applications; however, the same workflow can be used with any numerical simulation tool (e.g., a structural solver or a spread-sheet) that is able to interact via a command-line interface or using scripting languages. We conduct design space exploration and design optimization studies using quantitative and qualitative metrics, and, to reduce the high computing times and computational resources intrinsic to these kinds of studies, concurrent simulations and surrogate-based optimization are used.


Sign in / Sign up

Export Citation Format

Share Document