Assuring structural integrity of steel reactor pressure vesselsEdited by: L.E. Steele and K.E. Stahlkopf Applied Science Publishers Ltd (1980) £16.00

1981 ◽  
Vol 3 (3) ◽  
pp. 158-158
Author(s):  
L POOK
Author(s):  
Yongjian Gao ◽  
Yinbiao He ◽  
Ming Cao ◽  
Yuebing Li ◽  
Shiyi Bao ◽  
...  

In-Vessel Retention (IVR) is one of the most important severe accident mitigation strategies of the third generation passive Nuclear Power Plants (NPP). It is intended to demonstrate that in the case of a core melt, the structural integrity of the Reactor Pressure Vessel (RPV) is assured such that there is no leakage of radioactive debris from the RPV. This paper studied the IVR issue using Finite Element Analyses (FEA). Firstly, the tension and creep testing for the SA-508 Gr.3 Cl.1 material in the temperature range of 25°C to 1000°C were performed. Secondly, a FEA model of the RPV lower head was built. Based on the assumption of ideally elastic-plastic material properties derived from the tension testing data, limit analyses were performed under both the thermal and the thermal plus pressure loading conditions where the load bearing capacity was investigated by tracking the propagation of plastic region as a function of pressure increment. Finally, the ideal elastic-plastic material properties incorporating the creep effect are developed from the 100hr isochronous stress-strain curves, limit analyses are carried out as the second step above. The allowable pressures at 0 hr and 100 hr are obtained. This research provides an alternative approach for the structural integrity evaluation for RPV under IVR condition.


Author(s):  
J. C. Kim ◽  
J. B. Choi ◽  
Y. H. Choi

Since early 1950’s fracture mechanics has brought significant impact on structural integrity assessment in a wide range of industries such as power, transportation, civil and petrochemical industries, especially in nuclear power plant industries. For the last two decades, significant efforts have been devoted in developing defect assessment procedures, from which various fitness-for-purpose or fitness-for-service codes have been developed. From another aspect, recent advances in IT (Information Technologies) bring rapid changes in various engineering fields. IT enables people to share information through network and thus provides concurrent working environment without limitations of working places. For this reason, a network system based on internet or intranet has been appeared in various fields of business. Evaluating the integrity of structures is one of the most critical issues in nuclear industry. In order to evaluate the integrity of structures, a complicated and collaborative procedure is required including regular in-service inspection, fracture mechanics analysis, etc. And thus, experts in different fields have to cooperate to resolve the integrity problem. In this paper, an integrity evaluation system on the basis of cooperative virtual reality environment for reactor pressure vessel which adapts IT into a structural integrity evaluation procedure for reactor pressure vessel is introduced. The proposed system uses Virtual Reality (VR) technique, Virtual Network Computing (VNC) and knowledge based programs. This system is able to support 3-dimensional virtual reality environment and to provide experts to cooperate by accessing related data through internet. The proposed system is expected to provide a more efficient integrity evaluation for reactor pressure vessel.


Author(s):  
Dominique Moinereau ◽  
Jean-Michel Frund ◽  
Henriette Churier-Bossennec ◽  
Georges Bezdikian ◽  
Alain Martin

A significant extensive Research & Development work is conducted by Electricite´ de France (EDF) related to the structural integrity re-assessment of the French 900 and 1300 MWe reactor pressure vessels in order to increase their lifetime. Within the framework of this programme, numerous developments have been implemented or are in progress related to the methodology to assess flaws during a pressurized thermal shock (PTS) event. The paper contains three aspects: a short description of the specific French approach for RPV PTS assessment, a presentation of recent improvements on thermalhydraulic, materials and mechanical aspects, and finally an overview of the present R&D programme on thermalhydraulic, materials and mechanical aspects. Regarding the last aspect on present R&D programme, several projects in progress will be shortly described. This overview includes the redefinition of some significant thermalhydraulic transients based on some new three-dimensional CFD computations (focused at the present time on small break LOCA transient), the assessment of vessel materials properties, and the improvement of the RPV PTS structural integrity assessment including several themes such as warm pre-stress (WPS), crack arrest, constraint effect ....


Author(s):  
Komei Suzuki ◽  
Etsuo Murai ◽  
Yasuhiko Tanaka ◽  
Iku Kurihara ◽  
Tomoharu Sasaki ◽  
...  

Closure head forging (SA508, Gr.3 Cl.1) integrated with flange for PWR reactor pressure vessel has been developed. This is intended to enhance structural integrity of closure head resulted in elimination of ISI, by eliminating weld joint between closure head and flange in the conventional design. Manufacturing procedures have been established so that homogeneity and isotropy of the material properties can be assured in the closure head forging integrated with flange. Acceptance tensile and impact test specimens are taken and tested regarding the closure head forging integrated with flange as very thick and complex forgings. This paper describes the manufacturing technologies and material properties of the closure head forging integrated with flange.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Yinsheng Li ◽  
Genshichiro Katsumata ◽  
Koichi Masaki ◽  
Shotaro Hayashi ◽  
Yu Itabashi ◽  
...  

Abstract Nowadays, it has been recognized that probabilistic fracture mechanics (PFM) is a promising methodology in structural integrity assessments of aged pressure boundary components of nuclear power plants, because it can rationally represent the influencing parameters in their inherent probabilistic distributions without over conservativeness. A PFM analysis code PFM analysis of structural components in aging light water reactor (PASCAL) has been developed by the Japan Atomic Energy Agency to evaluate the through-wall cracking frequencies of domestic reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock (PTS) transients. In addition, efforts have been made to strengthen the applicability of PASCAL to structural integrity assessments of domestic RPVs against nonductile fracture. A series of activities has been performed to verify the applicability of PASCAL. As a part of the verification activities, a working group was established with seven organizations from industry, universities, and institutes voluntarily participating as members. Through one-year activities, the applicability of PASCAL for structural integrity assessments of domestic RPVs was confirmed with great confidence. This paper presents the details of the verification activities of the working group, including the verification plan, approaches, and results.


Author(s):  
Hilda B. Klasky ◽  
B. Richard Bass ◽  
Terry L. Dickson ◽  
Sarma B. Gorti ◽  
Randy K. Nanstad ◽  
...  

The Oak Ridge National Laboratory (ORNL) performed a detailed technical review of the 2015 Electrabel (EBL) Safety Cases prepared for the Belgium reactor pressure vessels (RPVs) at Doel 3 and Tihange 2 (D3/T2). The Federal Agency for Nuclear Control (FANC) in Belgium commissioned ORNL to provide a thorough assessment of the existing safety margins against cracking of the RPVs due to the presence of almost laminar flaws found in each RPV. Initial efforts focused on surveying relevant literature that provided necessary background knowledge on the issues related to the quasi-laminar flaws observed in D3/T2 reactors. Next, ORNL proceeded to develop an independent quantitative assessment of the entire flaw population in the two Belgian reactors according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix G, “Fracture Toughness Criteria for Protection Against Failure,” New York (both 1992 and 2004 versions). That screening assessment of the EBL-characterized flaws in D3/T2 used ORNL tools, methodologies, and the ASME Code Case N-848, “Alternative Characterization Rules for Quasi-Laminar Flaws”. Results and conclusions derived from comparisons of the ORNL flaw acceptance assessments of D3/T2 with those from the 2015 EBL Safety Cases are presented in the paper. The ORNL screening analyses identified fewer flaws than EBL that were not compliant with the ASME Section XI (1992) criterion; the EBL criterion imposed additional conservatisms not included in ASME Section XI. Furthermore, ORNL’s application of the updated ASME Section XI (2004) criterion produced only four non-compliant flaws, all due to design-basis loss-of-coolant loading transients. Among the latter, only one flaw remained non-compliant when analyzed using the warm-prestress (WPS) cleavage fracture model typically applied in USA flaw assessments. ORNL’s independent refined analysis of that flaw (#1660, which was also non-compliant in the EBL screening assessments) rendered it compliant when modeled as a more realistic individual quasi-laminar flaw using a 3-dimensional XFEM (eXtended Finite Element Method) approach available in the ABAQUS© finite element code. Taken as a whole, the ORNL-specific results and conclusions confirmed the structural integrity of Doel 3 and Tihange 2 under all design transients with ample margin in the presence of the 16,196 detected flaws.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Kunio Onizawa

To apply a probabilistic fracture mechanics (PFM) analysis to the structural integrity assessment of a reactor pressure vessel (RPV), a PFM analysis code has been developed at JAEA. Using this PFM analysis code, pascal version 3, the conditional probabilities of crack initiation (CPIs) and fracture for an RPV during pressurized thermal shock (PTS) events have been analyzed. Sensitivity analyses on certain input parameters were performed to clarify their effect on the conditional fracture probability. Comparisons between the conditional probabilities and the temperature margin (ΔTm) based on the current deterministic analysis method were made for various model plant conditions for typical domestic older types of RPVs. From the analyses, a good correlation between ΔTm and the conditional probability of crack initiation was obtained.


Sign in / Sign up

Export Citation Format

Share Document