Parallel effects of arachidonic acid on insulin secretion, calmodulin-dependent protein kinase activity and protein kinase C activity in pancreatic islets

Cell Calcium ◽  
1992 ◽  
Vol 13 (3) ◽  
pp. 163-172 ◽  
Author(s):  
M Landt ◽  
R.A Easom ◽  
J.R Colca ◽  
B.A Wolf ◽  
J Turk ◽  
...  
Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5518-5526 ◽  
Author(s):  
Bhuvana Balasubramanian ◽  
Wendy Portillo ◽  
Andrea Reyna ◽  
Jian Zhong Chen ◽  
Anthony N. Moore ◽  
...  

In addition to the activation of classical progestin receptor-dependent genomic pathway, progesterone (P) can activate nonclassical, membrane-initiated signaling pathways in the brain. We recently demonstrated rapid P activation of second-messenger kinases, protein kinase A, and protein kinase C in the ventromedial nucleus (VMN) and preoptic area (POA) of rat brain. To determine whether P can activate yet another Ca+2dependent kinase, we examined the rapid P modulation of calcium and calmodulin-dependent protein kinase II (CaMKII) in the VMN and POA in female rats. A rapid P-initiated activation of CaMKII basal activity was observed in the VMN but not the POA at 30 min. Estradiol benzoate (EB) priming enhanced this CaMKII basal activity in both the VMN and POA. CaMKII protein levels and phosphorylation of Thr-286 moiety on CaMKII, however, remained unchanged with EB and/or P treatments, suggesting that the changes in the CaMKII kinase activity are due to rapid P modulation of the kinase activity and not its synthesis or autoactivation. Furthermore, intracerebroventricular (icv) administration of a CaMKII-specific inhibitor, KN-93, 30 min prior to the P infusion, in EB-primed, ovariectomized female rats inhibited CaMKII activation but not protein kinase A and protein kinase C activities. Interestingly, icv administration of KN-93 30 min prior to P infusion (icv) resulted in a reduction but not total inhibition of P-facilitated lordosis response in EB-primed female rats. These observations suggest a redundancy or, alternately, a hierarchy in the P-regulated activation of kinase signaling cascades in female reproductive behavior.


1985 ◽  
Vol 232 (2) ◽  
pp. 609-611 ◽  
Author(s):  
N G Anderson ◽  
P J Hanson

The relative potency with which phorbol esters inhibited histamine-stimulated aminopyrine accumulation (an index of acid secretion) paralleled that which has been established for the activation of purified protein kinase C. The inhibitory effect of 1-oleoyl-2-acetylglycerol on aminopyrine accumulation stimulated by various secretagogues was similar to that of 12-O-tetradecanoylphorbol 13-acetate. Protein kinase C activity was present in a parietal-cell-enriched fraction. In conclusion, protein kinase C could be involved in mechanisms regulating gastric acid secretion.


1989 ◽  
Vol 264 (1) ◽  
pp. 27-33 ◽  
Author(s):  
R A Easom ◽  
J H Hughes ◽  
M Landt ◽  
B A Wolf ◽  
J Turk ◽  
...  

The tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces insulin secretion from isolated pancreatic islets, and this suggests a potential role for protein kinase C in the regulation of stimulus-secretion coupling in islets. In the present study, the hypothesis that the insulinotropic effect of TPA is mediated by activation of protein kinase C in pancreatic islets has been examined. TPA induced a gradual translocation of protein kinase C from the cytosol to a membrane-associated state which correlated with the gradual onset of insulin secretion. The pharmacologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not mimic this effect. TPA also induced a rapid time-dependent decline of total protein kinase C activity in islets and the appearance of a Ca2+- and phospholipid-independent protein kinase activity. Insulin secretion induced by TPA was completely suppressed (IC50 approximately 10 nM) by staurosporine, a potent protein kinase C inhibitor. Staurosporine also inhibited islet cytosolic protein kinase C activity at similar concentrations (IC50 approximately 2 nM). In addition, staurosporine partially (approximately 60%) inhibited glucose-induced insulin secretion at concentrations (IC50 approximately 10 nM) similar to those required to inhibit TPA-induced insulin secretion, suggesting that staurosporine may act at a step common to both mechanisms, possibly the activation of protein kinase C. However, stimulatory concentrations of glucose did not induce down-regulation of translocation of protein kinase C, and the inhibition of glucose-induced insulin release by staurosporine was incomplete. Significant questions therefore remain unresolved as to the possible involvement of protein kinase C in glucose-induced insulin secretion.


1987 ◽  
Vol 66 (2) ◽  
pp. 557-563 ◽  
Author(s):  
F. Dowd ◽  
E.L. Watson ◽  
Y.-S. Lau ◽  
J. Justin ◽  
J. Pasieniuk ◽  
...  

Rat parotid secretory granule membranes were examined for the presence of calcium-dependent protein kinase activities and kinase substrates. Protein kinase C (C-kinase), which is stimulated by certain phospholipids, was present in the membranes, as indicated by its ability to catalyze the phosphorylation of histone. Two substrates for protein kinase C were seen in the granule membranes. The cytosolic fraction from the cell contained kinase activity, which was stimulated by phosphatidylserine and which caused the phosphorylation of two granule membrane polypeptides. In addition, when both granule membranes and cytosol were incubated together, phosphorylation of the cytosolic substrates was inhibited, indicating that the granule membrane substrates were phosphorylated preferentially. The results indicate that the granule membranes may react with cytosolic protein kinase C activity in a way which would direct an intracellular calcium and diacylglycerol signal toward the granule membrane. Since these signals occur during stimulation by various agonists, the mechanism may contribute to secretion.


Sign in / Sign up

Export Citation Format

Share Document