Ca2+-mobilising agonists potentiate forskolin- and VIP-stimulated cAMP production in human colonic cell line, HT29-cl.19A: Role of [Ca2+]i and protein kinase C

Cell Calcium ◽  
1994 ◽  
Vol 15 (2) ◽  
pp. 162-174 ◽  
Author(s):  
G. Warhurst ◽  
K.E. Fogg ◽  
N.B. Higgs ◽  
A. Tonge ◽  
J. Grundy
1995 ◽  
Vol 218 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Javier Gómez ◽  
Christina Pitton ◽  
Alphonse Garcı́a ◽  
Ana Martinez De Aragón ◽  
Augusto Silva ◽  
...  

1998 ◽  
Vol 350 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Nalini Kaul ◽  
Rayudu Gopalakrishna ◽  
Usha Gundimeda ◽  
Jinah Choi ◽  
Henry Jay Forman

1990 ◽  
Vol 267 (1) ◽  
pp. 227-232 ◽  
Author(s):  
S J Hughes ◽  
J G Chalk ◽  
S J Ashcroft

We examined the contribution of signal-transduction pathways to acetylcholine-induced insulin release in the clonal beta-cell line HIT-T15. To assess the importance of changes in cytosolic free Ca2+ [(Ca2+]i), we studied time courses of the effects of glucose and acetylcholine on [Ca2+]i and insulin release in quin 2-loaded HIT cells. Incubation in the presence of glucose (2 mM) resulted in a sustained increase in [Ca2+]i in HIT cells from 98 +/- 7 nM to 195 +/- 12 nM measured after 9 min, whereas subsequent addition of acetylcholine (50 microM) produced a transient increase in [Ca2+]i which reached a peak after 30 s (at 274 +/- 10 nM), returning to pre-stimulus levels after 3 min. In contrast, incubation of HIT cells with acetylcholine in the presence of glucose produced a sustained increase in insulin release over and above that stimulated by glucose alone; after 10 min acetylcholine had potentiated glucose-stimulated insulin release by an additional increment of 135%. The transient increase in [Ca2+]i induced by acetylcholine was dose-dependent, and was prevented by omission of glucose or extracellular Ca2+ from the incubation medium. It was also inhibited by inclusion of 50 microM-verapamil in the incubation medium (by 87 +/- 3%) or by decreasing the Na+ concentration in the medium (by 73 +/- 6%). To evaluate the role of the protein kinase C pathway, we have pretreated HIT cells with the phorbol ester 12-O-tetradecanoylphorbol acetate (TPA), to deplete the protein kinase C activity, and have compared their secretory activity with that of control cells. Protein kinase C activity was decreased by 73% in HIT cells cultured in the presence of 200 nM-TPA for 22-24 h. TPA pre-treatment also significantly decreased the insulin content of HIT cells, but had no effect on cell number or the increases in [Ca2+]i induced by glucose or acetylcholine. TPA-pre-treated cells responded comparatively less well to secretagogues than did control cells: glucose-stimulated insulin release was decreased by 40%, whereas potentiation by TPA was significantly decreased by 50% in comparison with control cells (P less than 0.05, n = 24). Acetylcholine (50 microM) potentiated glucose-stimulated insulin release by 61% in control cells. This effect was abolished in HIT cells pre-treated with TPA, whereas these cells still retained their normal secretory response to stimulation by forskolin. These data suggest that an early increase in [Ca2+]i may be important for the initial increase in insulin release induced by acetylcholine in HIT cells.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document