Cooperative effects of human recombinant granulocyte-macrophage colony stimulating factor and human recombinant erythropoietin in inducing erythroid differentiation of the human erythroleukaemia cell line K 562 clonogenic cells

1989 ◽  
Vol 13 (2) ◽  
pp. 127-130 ◽  
Author(s):  
Hassan Tawhid ◽  
Wayne Labastide ◽  
Christopher Barker ◽  
John Rees
Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1782-1785
Author(s):  
DR Branch ◽  
JM Turc ◽  
LJ Guilbert

The murine lymphoblastic cell line DA-1 has been characterized as dependent upon both interleukin-3 (IL-3, multicolony-stimulating factor [multi-CSF]) and granulocyte-macrophage colony-stimulating factor (GM- CSF) for survival and growth. Here we demonstrate that it is responsive to a third hematopoietic factor, the erythroid-specific hormone, erythropoietin (Epo). DA-1 cells are stimulated to proliferate by partly purified natural murine and human Epo, and pure recombinant human Epo. Antibody to Epo specifically blocks Epo-stimulated growth. Maximal growth stimulated by Epo and GM-CSF is similar, and considerably less than that stimulated by multi-CSF. Proliferation stimulated by Epo and GM-CSF is transient, decreasing within 24 to 48 hours of exposure. However, Epo acts cooperatively with GM-CSF to sustain proliferation. With or without GM-CSF, no obvious erythroid differentiation of DA-1 cells occurs after exposure to Epo for up to 72 hours. This is the first report of a growth factor-dependent cell line also responsive to Epo for survival and growth. The availability of this cell line model should greatly facilitate biochemical analysis of the mechanism of Epo growth-stimulating action.


Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 42-48 ◽  
Author(s):  
N Komatsu ◽  
T Suda ◽  
M Moroi ◽  
N Tokuyama ◽  
Y Sakata ◽  
...  

Abstract Recently, a human megakaryoblastic cell line, CMK, was established from the peripheral blood of a megakaryoblastic leukemia patient with Down syndrome. Using this cell line, we studied the proliferation and differentiation of megakaryocytic cells in the presence of highly purified human hematopoietic factors and phorbol 12-myristate-13- acetate (PMA). In a methylcellulose culture system, interleukin-3 (IL- 3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitated colony formation by CMK cells in a dose-dependent manner. The maximum stimulating doses of these factors were 10 and 200 U/mL, respectively. These concentrations were comparable to those that stimulate activity in normal hematopoietic cells. In contrast, granulocyte-colony stimulating factor (G-CSF), macrophage-colony stimulating factor (M-CSF), and erythropoietin (EPO) had no effects on the colony formation of CMK cells. In a liquid culture system, 20% of the CMK cells expressed glycoprotein IIb/IIIa (GPIIb/IIIa) antigen without hematopoietic factors, whereas 40% of the cells expressed GPIIb/IIIa with the addition of IL-3 and GM-CSF. EPO also slightly enhanced expression of GPIIb/IIIa. On the other hand, PMA inhibited growth of CMK cells and induced most of them to express the GPIIb/IIIa antigen. Furthermore, PMA induced CMK cells to produce growth activity toward new inocula of CMK cells. This growth factor (GF) contained colony-stimulating activity (CSA) in normal bone marrow (BM) cells. The activity was believed to be attributable mainly to GM-CSF, since 64% of this activity was neutralized by anti-GM-CSF antibodies and a transcript of GM-CSF was detected in mRNA from PMA-treated CMK cells by Northern blot analysis. These observations suggest that GM-CSF, as well as IL-3, should play an important role in megakaryocytopoiesis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew Drill ◽  
Kim L. Powell ◽  
Liyen Katrina Kan ◽  
Nigel C. Jones ◽  
Terence J. O’Brien ◽  
...  

Abstract Glioblastoma is the most aggressive form of primary brain cancer, with a median survival of 12–15 months. The P2X receptor 7 (P2X7R) is upregulated in glioblastoma and is associated with increased tumor cell proliferation. The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is also upregulated in glioblastoma and has been shown to have both pro- and anti-tumor functions. This study investigates the potential mechanism linking P2X7R and GM-CSF in the U251 glioblastoma cell line and the therapeutic potential of P2X7R antagonism in this setting. P2X7R protein and mRNA was demonstrated to be expressed in the U251 cell line as assessed by immunocytochemistry and qPCR. Its channel function was intact as demonstrated by live cell confocal imaging using a calcium indicator Fluo-4 AM. Inhibition of P2X7R using antagonist AZ10606120, decreased both GM-CSF mRNA (P < 0.05) and protein (P < 0.01) measured by qPCR and ELISA respectively. Neutralization of GM-CSF with an anti-GM-CSF antibody did not alter U251 cell proliferation, however, P2X7R antagonism with AZ10606120 significantly reduced U251 glioblastoma cell numbers (P < 0.01). This study describes a novel link between P2X7R activity and GM-CSF expression in a human glioblastoma cell line and highlights the potential therapeutic benefit of P2X7R inhibition with AZ10606120 in glioblastoma.


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1782-1785 ◽  
Author(s):  
DR Branch ◽  
JM Turc ◽  
LJ Guilbert

Abstract The murine lymphoblastic cell line DA-1 has been characterized as dependent upon both interleukin-3 (IL-3, multicolony-stimulating factor [multi-CSF]) and granulocyte-macrophage colony-stimulating factor (GM- CSF) for survival and growth. Here we demonstrate that it is responsive to a third hematopoietic factor, the erythroid-specific hormone, erythropoietin (Epo). DA-1 cells are stimulated to proliferate by partly purified natural murine and human Epo, and pure recombinant human Epo. Antibody to Epo specifically blocks Epo-stimulated growth. Maximal growth stimulated by Epo and GM-CSF is similar, and considerably less than that stimulated by multi-CSF. Proliferation stimulated by Epo and GM-CSF is transient, decreasing within 24 to 48 hours of exposure. However, Epo acts cooperatively with GM-CSF to sustain proliferation. With or without GM-CSF, no obvious erythroid differentiation of DA-1 cells occurs after exposure to Epo for up to 72 hours. This is the first report of a growth factor-dependent cell line also responsive to Epo for survival and growth. The availability of this cell line model should greatly facilitate biochemical analysis of the mechanism of Epo growth-stimulating action.


Sign in / Sign up

Export Citation Format

Share Document