scholarly journals Induction of Sp1-p53 DNA-binding heterocomplexes during granulocyte/macrophage colony-stimulating factor-dependent proliferation in human erythroleukemia cell line TF-1.

1993 ◽  
Vol 268 (11) ◽  
pp. 7923-7928
Author(s):  
F. Borellini ◽  
R.I. Glazer
Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 42-48 ◽  
Author(s):  
N Komatsu ◽  
T Suda ◽  
M Moroi ◽  
N Tokuyama ◽  
Y Sakata ◽  
...  

Abstract Recently, a human megakaryoblastic cell line, CMK, was established from the peripheral blood of a megakaryoblastic leukemia patient with Down syndrome. Using this cell line, we studied the proliferation and differentiation of megakaryocytic cells in the presence of highly purified human hematopoietic factors and phorbol 12-myristate-13- acetate (PMA). In a methylcellulose culture system, interleukin-3 (IL- 3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) facilitated colony formation by CMK cells in a dose-dependent manner. The maximum stimulating doses of these factors were 10 and 200 U/mL, respectively. These concentrations were comparable to those that stimulate activity in normal hematopoietic cells. In contrast, granulocyte-colony stimulating factor (G-CSF), macrophage-colony stimulating factor (M-CSF), and erythropoietin (EPO) had no effects on the colony formation of CMK cells. In a liquid culture system, 20% of the CMK cells expressed glycoprotein IIb/IIIa (GPIIb/IIIa) antigen without hematopoietic factors, whereas 40% of the cells expressed GPIIb/IIIa with the addition of IL-3 and GM-CSF. EPO also slightly enhanced expression of GPIIb/IIIa. On the other hand, PMA inhibited growth of CMK cells and induced most of them to express the GPIIb/IIIa antigen. Furthermore, PMA induced CMK cells to produce growth activity toward new inocula of CMK cells. This growth factor (GF) contained colony-stimulating activity (CSA) in normal bone marrow (BM) cells. The activity was believed to be attributable mainly to GM-CSF, since 64% of this activity was neutralized by anti-GM-CSF antibodies and a transcript of GM-CSF was detected in mRNA from PMA-treated CMK cells by Northern blot analysis. These observations suggest that GM-CSF, as well as IL-3, should play an important role in megakaryocytopoiesis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew Drill ◽  
Kim L. Powell ◽  
Liyen Katrina Kan ◽  
Nigel C. Jones ◽  
Terence J. O’Brien ◽  
...  

Abstract Glioblastoma is the most aggressive form of primary brain cancer, with a median survival of 12–15 months. The P2X receptor 7 (P2X7R) is upregulated in glioblastoma and is associated with increased tumor cell proliferation. The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is also upregulated in glioblastoma and has been shown to have both pro- and anti-tumor functions. This study investigates the potential mechanism linking P2X7R and GM-CSF in the U251 glioblastoma cell line and the therapeutic potential of P2X7R antagonism in this setting. P2X7R protein and mRNA was demonstrated to be expressed in the U251 cell line as assessed by immunocytochemistry and qPCR. Its channel function was intact as demonstrated by live cell confocal imaging using a calcium indicator Fluo-4 AM. Inhibition of P2X7R using antagonist AZ10606120, decreased both GM-CSF mRNA (P < 0.05) and protein (P < 0.01) measured by qPCR and ELISA respectively. Neutralization of GM-CSF with an anti-GM-CSF antibody did not alter U251 cell proliferation, however, P2X7R antagonism with AZ10606120 significantly reduced U251 glioblastoma cell numbers (P < 0.01). This study describes a novel link between P2X7R activity and GM-CSF expression in a human glioblastoma cell line and highlights the potential therapeutic benefit of P2X7R inhibition with AZ10606120 in glioblastoma.


1999 ◽  
Vol 19 (6) ◽  
pp. 4191-4199 ◽  
Author(s):  
Terri L. Towers ◽  
Teodora P. Staeva ◽  
Leonard P. Freedman

ABSTRACT We previously described a control element in the granulocyte-macrophage colony-stimulating factor (GM-CSF) enhancer that is necessary and sufficient to mediate both transcriptional activation in response to T-cell stimuli and transcriptional repression by 1,25-dihydroxyvitamin D3[1,25(OH)2D3] through the vitamin D3 receptor (VDR). This DNA element is a composite site that is recognized by both Fos-Jun and NFAT1; it is directly bound by VDR in the absence of a retinoid X receptor as an apparent monomer, and it is bound in a unique tertiary conformation. We describe here the mechanism by which VDR elicits its transcriptional inhibitory effect. Firstly, VDR outcompetes NFAT1 for binding to the composite site. Overexpression of NFAT1 in vivo by transient transfection is able to relieve the 1,25(OH)2D3-dependent repression. Secondly, VDR stabilizes the binding of a Jun-Fos heterodimer to the adjacent AP-1 portion of the element. This appears to occur through a direct interaction between VDR and c-Jun, as demonstrated in vitro by direct glutathione S-transferase coprecipitation assays. In vivo, overexpression of c-Jun, but not c-Fos, leads to a rescue of the 1,25(OH)2D3-mediated repression. Transfected FLAG-VDR bound to the NFAT1–AP-1 DNA binding element can be selectively precipitated from nuclear extracts that are made from cells treated with activating agents in the presence of 1,25(OH)2D3. VDR is not detected in the complex in the absence of the ligand. Thus, VDR acts selectively on the two components required for activation of this promoter/enhancer: it competes with NFAT1 for binding to the composite site, positioning itself adjacent to Jun-Fos on the DNA. Co-occupancy apparently leads to an inhibitory effect on c-Jun’s transactivation function. These two events mediated by VDR effectively block the NFAT1–AP-1 activation complex, resulting in an attenuation of activated GM-CSF transcription.


1990 ◽  
Vol 64 (9) ◽  
pp. 1247-1248
Author(s):  
Kazuya KODAMA ◽  
Ryosuke SATO ◽  
Shinichi KAWAMURA ◽  
Masaki YUSUKAWA ◽  
Shigeru FUJITA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document