Fracture detection using P-wave and S-wave vertical seismic profiling at The Geysers

Geophysics ◽  
1988 ◽  
Vol 53 (1) ◽  
pp. 76-84 ◽  
Author(s):  
E. L. Majer ◽  
T. V. McEvilly ◽  
F. S. Eastwood ◽  
L. R. Myer

In a pilot vertical seismic profiling study, P-wave and cross‐polarized S-wave vibrators were used to investigate the potential utility of shear‐wave anisotropy measurements in characterizing a fractured rock mass. The caprock at The Geysers geothermal field was found to exhibit about an 11 percent velocity variation between SH-waves and SV-waves generated by rotating the S-wave vibrator orientation to two orthogonal polarizations for each survey level in the well. The effect is generally consistent with the equivalent anisotropy expected from the known fracture geometry.


Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1365-1368
Author(s):  
M. Boulfoul ◽  
Doyle R. Watts

The petroleum exploration industry uses S‐wave vertical seismic profiling (VSP) to determine S‐wave velocities from downgoing direct arrivals, and S‐wave reflectivities from upgoing waves. Seismic models for quantitative calibration of amplitude variation with offset (AVO) data require S‐wave velocity profiles (Castagna et al., 1993). Vertical summations (Hardage, 1983) of the upgoing waves produce S‐wave composite traces and enable interpretation of S‐wave seismic profile sections. In the simplest application of amplitude anomalies, the coincidence of high amplitude P‐wave reflectivity and low amplitude S‐wave reflectivity is potentially a direct indicator of the presence of natural gas.


Geophysics ◽  
1989 ◽  
Vol 54 (4) ◽  
pp. 478-485 ◽  
Author(s):  
Hassan Ahmed

Three‐component vertical seismic profiling (3-CVSP) data were acquired and processed to yield separate estimates of the compressional (P)-wave and shear (S)-wave fields. Interval velocities, [Formula: see text] and [Formula: see text] (of the P and S waves), are computed from the identified onset times at many seismometer positions along the borehole. The ratio [Formula: see text] is calculated and used to compute the Poisson’s ratio and the ratio of incompressibility to rigidity. In a North Sea well, the variation in these elastic parameters was highly correlated with the variation in stratigraphy. Of particular interest was the ability to indicate pore fluids such as gas or water within a reservoir. Abrupt changes of the calculated parameters can be an indicator of the gas‐water to water transition zone.


Author(s):  
Haohao Zhang ◽  
Jun Lu ◽  
Benchi Chen ◽  
Xuejun Ma ◽  
Zhidong Cai

Abstract The considerable depth and complicated structure of the Tahe Oilfield in the Tuofutai area of China make it very difficult to delineate its Ordovician carbonate fracture-cavity reservoir. The resolution of conventional ground seismic data is inadequate to satisfy current exploitation requirements. To further improve the understanding of the carbonate fracture-cavity reservoir of the Tahe Oilfield and to provide predictions of reservoir properties that are more accurate, a walkaround 3D-3C vertical seismic profiling (VSP) survey was conducted. First, we preprocessed raw VSP data and developed a method of joint PP- and PSV-wave prestack time migration. In contrast to ground seismic imaging profiles, VSP imaging profiles have a higher resolution and wider spectrum range that provide more detailed strata information. Then, using the joint PP- and PSV-wave prestack inversion method, we obtained the PP- and PSV-wave impedance and Poisson's ratio parameters of the Ordovician carbonate reservoir. Compared with the P-wave impedance of the ground seismic inversion, we found the VSP inversion results had higher accuracy, which enabled clearer identification of the internal characteristics of the carbonate reservoir. Finally, coupled with the Poisson's ratio attribute, we predicted the distribution of favorable reservoirs and interwell connectivity. The prediction results were verified using both logging and production data. The findings of this study demonstrate the applicability of the proposed technical method for the exploration of deep carbonate fracture-cavity reservoirs.


Geophysics ◽  
1991 ◽  
Vol 56 (6) ◽  
pp. 859-862 ◽  
Author(s):  
Robert R. Stewart

Multicomponent seismic recordings are currently being analyzed in an attempt to improve conventional P‐wave sections and to find and use rock properties associated with shear waves (e.g. Dohr, 1985; Danbom and Dominico, 1986). Mode‐converted (P-SV) waves hold a special interest for several reasons: They are generated by conventional P‐wave sources and have only a one‐way travel path as a shear wave through the typically low velocity and attenuative near surface. For a given frequency, they will have a shorter wavelength than the original P wave, and thus offer higher spatial resolution; this has been observed in several vertical seismic profiling (VSP) cases (e.g., Geis et al., 1990). However, for surface seismic data, converted waves are often found to be of lower frequency than P-P waves (e.g., Eaton et al., 1991).


Author(s):  
Yanwen Wei ◽  
Yunyue Elita Li ◽  
Jingjing Zong ◽  
Jizhong Yang ◽  
Haohuan Fu ◽  
...  

Geophysics ◽  
1980 ◽  
Vol 45 (9) ◽  
pp. 1373-1411 ◽  
Author(s):  
C. C. Lash

Evidence that shear (S) waves are much more important in seismic surveys than currently believed was found in each of two deep well tests conducted some time ago. Wave tests were recorded along vertical lines, following procedures which are now designated “vertical seismic profiling.” The results may be divided into (1) evidence that shear (S) waves are produced by in‐hole dynamite charges and by the resulting compressional (P) waves, and (2) evidence that the S‐waves subsequently produce P‐waves. The proof of S‐wave production is quite conclusive. Even if we say that only P‐waves are set up in the immediate vicinity of the shot, some S‐waves are then generated within a radius of 10 to 100 ft to form what we will call a direct or “source S wave.” Other S‐waves are set up by conversion of P‐wave energy to S‐wave energy at interfaces hundreds and thousands of feet from the dynamite charge. In contrast to the P to S conversion, the evidence for S to P conversion is less conclusive. The source S‐wave generated near the shot was found to have a long‐period character, with many cycles which are believed to be controlled by the layering near the shot. The PS converted waves, which appear later, resemble the P‐waves that produce them. The interference to primary reflections by multiple reflections and/or converted waves produces complex signals at points deep in the well which require directional discrimination to separate up‐traveling waves from down‐traveling waves.


2019 ◽  
Vol 38 (11) ◽  
pp. 833-842
Author(s):  
Jacob Bayer ◽  
Bryce Jensen ◽  
Yingping Li ◽  
Tianrun Chen ◽  
Ken Matson

Between July 2018 and January 2019, Shell acquired two vertical seismic profiling (VSP) surveys in two deepwater wells in the Gulf of Mexico by using a seismic while drilling (SWD) tool. Each survey included a rig source zero-offset VSP and a boat source offset VSP. The main objective of the surveys is to delineate the salt-sediment boundary at the salt base and flank. We design and execute the complex VSP surveys with emphasis on optimization, efficiency, and integration. We develop a comprehensive analysis and processing method to integrate P-wave sediment and salt proximities with converted PS salt proximity. We use SWD-VSP surveys to demonstrate how we define the salt boundary with the integrated results. Our results show that we can delineate the salt boundary with better accuracy and with a high degree of confidence. These successful VSP surveys provide significant business and technical value.


Sign in / Sign up

Export Citation Format

Share Document