optimization efficiency
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 35)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Cong Chen ◽  
Jiaxin Liu ◽  
Pingfei Xu

AbstractOne of the key issues that affect the optimization effect of the efficient global optimization (EGO) algorithm is to determine the infill sampling criterion. Therefore, this paper compares the common efficient parallel infill sampling criterion. In addition, the pseudo-expected improvement (EI) criterion is introduced to minimizing the predicted (MP) criterion and the probability of improvement (PI) criterion, which helps to improve the problem of MP criterion that is easy to fall into local optimum. An adaptive distance function is proposed, which is used to avoid the concentration problem of update points and also improves the global search ability of the infill sampling criterion. Seven test problems were used to evaluate these criteria to verify the effectiveness of these methods. The results show that the pseudo method is also applicable to PI and MP criteria. The DMP and PEI criteria are the most efficient and robust. The actual engineering optimization problems can more directly show the effects of these methods. So these criteria are applied to the inverse design of RAE2822 airfoil. The results show the criterion including the MP has higher optimization efficiency.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1322
Author(s):  
Jian Zhang ◽  
Shuai Ling ◽  
Ping Wang ◽  
Xiaoyang Hu ◽  
Lu Liu

Electronic maps play an important role in the field of urban traffic management, but the interface functions provided by map service agencies are limited, and commercial maps are generally expensive. Furthermore, the map generation algorithms based on the Global Positioning System (GPS) data can be very complex and take up a lot of storage space, which limits their application to specific practical problems, such as the real-time update of area maps, temporary road control, emergency route planning, and other scenarios. In order to solve this problem, an intuitive, extensible, and flexible method of constructing urban road maps is proposed. Using the Othello-coordinated method, the representation of the unit grid cell was redesigned. Through this method, the disadvantages of the raster map’s large storage space and computing resource requirements are compensated for during processing, improving the topological expression ability of the raster map and the speed with which the construction of the map is realized. The application potential of the proposed method is demonstrated by the evaluation of public transport service and road network resilience. In our experiments, the optimization efficiency of storage space was up to 99.914%, and the calculation accuracy of bus coverage was about 99.86%.


2021 ◽  
Author(s):  
Ziyu Zhang ◽  
Yuelin Gao ◽  
Jiahang Li ◽  
Wenlu Zuo

Abstract Biogeography-based optimization (BBO) is not suitable for solving high-dimensional or multi-modal problems. To improve the optimization efficiency of BBO, this study proposes a novel BBO variant, which is named ZGBBO. For the selection operator, an example learning method is designed to ensure inferior solution will not destroy the superior solution. For the migration opeartor, a convex migration is proposed to increase the convergence speed, and the probability of finding the optimal solution is increased by using opposition-based learning to generate opposite individuals. The mutation operator of BBO is deleted to eliminate the generation of poor solutions. A differential evolution with feedback mechanism is merged to improve the convergence accuracy of the algorithm for multi-modal and irregular problems. Meanwhile, the greedy selection is used to make the population always moves in the direction of a better area. Then, the global convergence of ZGBBO is proved with Markov model and sequence convergence model. Quantitative evaluations, compared with three self-variants, seven improved BBO variants and six state-of-the-art evolutionary algorithms, experimental results on 24 benchmark functions show that every improved strategy is indispensable, and the overall performance of ZGBBO is better. Besides, the complexity of ZGBBO is analyzed by comparing with BBO, and ZGBBO has less computation and lower complexity.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Daiyu Zhang ◽  
Bei Zhang ◽  
Zhidong Wang ◽  
Xinyao Zhu

Performing shape optimization of blended-wing-body underwater glider (BWBUG) can significantly improve its gliding performance. However, high-fidelity CFD analysis and geometric constraint calculation in traditional surrogate-based optimization methods are expensive. An efficient surrogate-based optimization method based on the multifidelity model and geometric constraint gradient information is proposed. By establishing a shape parameterized model, deriving analytical expression of geometric constraint gradient, constructing multifidelity surrogate model, the calculation times of high-fidelity CFD model and geometric constraints are reduced during the shape optimization process of BWBUG, which greatly improve the optimization efficiency. Finally, the effectiveness and efficiency of the proposed method are verified by performing the shape optimization of a BWBUG and comparing with traditional surrogate-based optimization methods.


2021 ◽  
Author(s):  
Bin Wu ◽  
Yuhong Fan ◽  
Yeh-Cheng Chen ◽  
Tao Zhang

Abstract Information fusion is an important part of numerous neural network systems and other machine learning models. However, there exist some problems about fusion in scene understanding and recognition of complex environment, such as difficulty in feature extraction, small sample size and interpretability of the model. Deep reinforcement learning can combine the perception ability of deep learning with the decision-making ability of reinforcement learning to learn control strategies directly from high-dimensional original data. However, It faces these challenges, such as low optimization efficiency, poor generality of network model, small labeled samples, explainable decisions for users without a strong background on Artificial Intelligence (AI). Therefore, at the level of application and theoretical research, this paper aims to solve the above problems,the main contributions include: (1)optimize the feature representation methods based on spatial-temporal feature of the behavior characteristics in the scene, deep metric learning between adjacent layers and cross-layer learning theory, and then propose a lightweight reinforcement learning network model to solve these problems of the complexity of the model to be explained, the difficulty of extracting feature and the difficulty of tuning parameter; (2)construct the self-paced learning strategy of the deep reinforcement learning model, introduce transfer learning mechanism in the optimization process, and solve the problem of low optimization efficiency and small labeled samples; (3)design the behavior recognition framework of the multi-perspective deep knowledge transfer learning model, construct a explainable behavior descriptor, and solve the problems of poor network generality and weak 1explanation of network. Our research is of great theoretical and practical significance in the fields of artificial intelligence and public security.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ying-Hui Jia ◽  
Jun Qiu ◽  
Zhuang-Zhuang Ma ◽  
Fang-Fang Li

The balance between exploitation and exploration essentially determines the performance of a population-based optimization algorithm, which is also a big challenge in algorithm design. Particle swarm optimization (PSO) has strong ability in exploitation, but is relatively weak in exploration, while crow search algorithm (CSA) is characterized by simplicity and more randomness. This study proposes a new crow swarm optimization algorithm coupling PSO and CSA, which provides the individuals the possibility of exploring the unknown regions under the guidance of another random individual. The proposed CSO algorithm is tested on several benchmark functions, including both unimodal and multimodal problems with different variable dimensions. The performance of the proposed CSO is evaluated by the optimization efficiency, the global search ability, and the robustness to parameter settings, all of which are improved to a great extent compared with either PSO and CSA, as the proposed CSO combines the advantages of PSO in exploitation and that of CSA in exploration, especially for complex high-dimensional problems.


2021 ◽  
Author(s):  
Weimin Huang ◽  
Wei Zhang

Abstract It is one of the crucial problems in solving multi-objective problems (MOPs) that balance the convergence and diversity of the algorithm to obtain an outstanding Pareto optimal solution set. In order to elevate the performance further and improve the optimization efficiency of multi-objective particle swarm optimization (MOPSO), a novel adaptive MOPSO using a three-stage strategy (tssAMOPSO) is proposed in this paper, which can effectively balance the exploration and exploitation of the population and facilitate the convergence and diversity of MOPSO. Firstly, an adaptive flight parameter adjustment, formulated by the convergence contribution of nondominated solutions, can ameliorate the convergence and diversity of the algorithm enormously. Secondly, the population carries out the three-stage strategy of optimization in each iteration, namely adaptive optimization, decomposition, and Gaussian attenuation mutation. The three-stage strategy remarkably promotes the diversity and efficiency of the optimization process. Moreover, the convergence of three-stage optimization strategy is analyzed. Then, memory interval is equipped with particles to record the recent positions, which vastly improves the reliability of personal best selection. In the maintenance of external archive, the proposed fusion index can enhance the quality of nondominated solutions directly. Finally, comparative experiments are designed by a series of benchmark instances to verify the performance of tssAMOPSO. Experimental results show that the proposed algorithm achieves admirable performance compared with other contrast algorithms.


2021 ◽  
pp. 147592172110042
Author(s):  
Yang Zhang ◽  
Ka-Veng Yuen

With the development of deep learning, object detection algorithms based on horizontal box are widely used in the field of damage identification. However, damages can be in any direction and position, and they are not necessarily horizontal or vertical. This article proposes a bolt damage identification network, namely, orientation-aware center point estimation network, which models a damage as a center point of its rotated bounding box. The proposed orientation-aware center point estimation network uses deep layer aggregation network to search center points and regress to all other damage properties, such as size and angle. A loss function is designed to improve the optimization efficiency of network. Orientation-aware center point estimation network is applied to bolt damage detection, and comparison with the well-known Faster Region-Convolutional Neural Network (a benchmark using horizontal bounding box) demonstrates the accuracy of the proposed method. Finally, videos were utilized to verify the capability of the proposed orientation-aware center point estimation network in real-time detection of bolt damages.


2021 ◽  
Vol 39 (4) ◽  
pp. 1206-1215
Author(s):  
M.B. Sidiku ◽  
E.M. Eronu ◽  
E.C. Ashigwuike

This paper reviews the current strides in the wireless power transfer (WPT) system. The paper discusses the classification of wireless power transfer, its application, trend and impact on society, advantages as well as disadvantages. It also presents a comparative analysis of existing work done by researchers in the field of wireless power transfer showing the shortcomings in various topologies, communication, and optimization methods used to increase the overall performance efficiency and proffer direction for further studies. Keywords: wireless power transfer, application, advantages, disadvantages topologies, communication, optimization, efficiency


Sign in / Sign up

Export Citation Format

Share Document