interval velocities
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 9)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Vol 54 (2F) ◽  
pp. 110-119
Author(s):  
Yasir Shyaa ◽  
Ali Al-Rahim

This research deals with structural interpretation of Khashim Al-Ahmer Gas Field North-Eastern Iraq in Diyala Province, using the interpretation of inhomogeneous velocity data. The specific target in this field is the gaseous Jeribe reservoir representing the L. Miocene-Tertiary period. A very thick layer of evaporates Al-Fatha Formation is overlap the Jeribe Formation in the gas field and play as a sealed bed and transition zone for faults movement as a thrust fault. The thrust fault with gas content negatively affected the seismic energy, causing a high attenuation below the level of Al-Fatha Formation in the dome of the Khashm Al-Ahmer structure. Using the interval velocities derived from the sonic logs of five surrounding wells that represent the inhomogeneous behavior of the seismic wave velocity within the rock layers, a model of the velocity behavior in the field was built and the extent of the Jeribe gas reservoir was reconstructed according to the new velocities interpretation data.


2021 ◽  
Vol 13 (14) ◽  
pp. 2814
Author(s):  
Ibrar Iqbal ◽  
Xiong Bin ◽  
Gang Tian ◽  
Honghua Wang ◽  
Peng Sanxi ◽  
...  

The velocity of near-surface materials is one of the most important for Ground-Penetrating Radar (GPR). In the study, we evaluate the options for determining the GPR velocity to measure the accuracy of velocity approximations from the acquired GPR data at an experimental site in Hangzhou, China. A vertical profile of interval velocities can be estimated from each common mid-point (CMP) gather using velocity spectrum analysis. Firstly, GPR data are acquired and analyzed using the popular method of hyperbola fitting which generated surprisingly high subsurface signal velocity estimates while, for the same profile, the Amplitude variation with offset (AVO) analysis of the GPR data (using the same hyperbola fitting method) generate a more reasonable subsurface signal velocity estimate. Several necessary processing steps are applied both for CMP and AVO analysis. Furthermore, experimental analysis is conducted on the same test site to get velocities of samples based on dielectric constant measurement during the drilling process. Synthetic velocities generated by AVO analysis are validated by the experimental velocities which confirmed the suitability of velocity interpretations.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (7) ◽  
pp. 419-428
Author(s):  
Łukasz Bajewski ◽  
◽  
Aleksander Wilk ◽  
Andrzej Urbaniec ◽  
◽  
...  

This article presents a construction method of the velocity field for poststack time migration for 2D seismic calculated on the basis of interval velocities in boreholes and structural interpretation, as well as the results of poststack time migration based on this solution. Three velocity field models have been developed. The models used differ in the way of spatial interpolation and extrapolation in the adopted calculation grid in the depth domain, which was created on the basis of a structural interpretation of 2D seismic profiles. Three methods of interpolation and extrapolation were used: Gaussian distribution, kriging and moving average. The spatial distribution of the interval velocities in the boreholes was made using the Petrel software by Schlumberger. The interval velocities along the analyzed seismic profile were extracted from the computed spatial interval velocity models, and after conversion from the depth to the time domain, they were used for the poststack time migration. For comparison, poststack time migration was calculated for the same seismic profile based on the stacking velocities obtained in the seismic processing data as a result of velocity analyzes. The velocity field calculated on the basis of interval velocities and structural interpretation was used for the poststack time migration procedure performed with the Implicit FD Time Migration algorithm (finite difference), while the stacking velocities were used for the poststack time migration procedure performed with the Stolt and Kirchhoff algorithms in accordance with the technical conditions of correct operation of these algorithms. The selected percentage ranges of 60%, 100%, and 140% have been used for all velocity fields. Application of the element of directional velocity variation resulting from the spatial distribution of interval velocities in the boreholes to the velocity field for the poststack time migration allowed to obtain a better seismic image in relation to the one obtained as a result of applying the stacking velocities. The most reliable seismic image after poststack time migration was obtained for the velocity field calculated on the basis of the interval velocities with Gaussian distribution, using the finite difference algorithm with 60 percent value of the velocity field.


2021 ◽  
pp. 28-33
Author(s):  
I. A. Sanfirov ◽  
A. A. Zhikin ◽  
K. B. Fatkin ◽  
R. A. Bogdanov

The current development level of geophysical methods for mining monitoring of water-soluble mineral deposits provides opportunities to control the growing variety of potentially hazardous geological and mining conditions, to identify the critical states of rock mass and to monitor the emergency facilities. Seismic surveys for solving the specified problems have proven to be a highly informative method for studying the structural features and properties of productive and waterprotective overburden strata, which has a high information richness of the recorded data. The main set of parameters for the interpretation stage of seismic exploration has been formed based on the experience in shallow seismic surveys within a potash deposit; it incl udes the target reflection times, effective and interval velocities, amplitudes, frequencies and a number of derivatives from these parameters. Improvement and adaptation of world interpretation practices in relation to the indicated seismic studies conditions provides means for increasing reliability of anomalies identification and expanding the set of typical wave ‘images’ for various kinds of inhomogeneities in a wide range of wave field realizations and its attributes. The analysis of irregular wave field component in the results of scattered waves processing, spectral decomposition and RGB-mixing is considered as an additional techniques of qualitative interpretation. An approach is proposed to determining possible fracturing in rock mass based on the variability of interval velocities. In combination with the AVO-analysis, this approach makes it possible to assess the trend of rock disintegration within the emergency facilities. The interpretation results of the areal (quasi-3D) and spatial (3D) detailed surveys of a shallow potash deposit are presented.


2021 ◽  
Vol 40 (3) ◽  
pp. 202-207
Author(s):  
Anke S. Wendt ◽  
Monzurul Alam ◽  
Joao Paulo Castagnoli

Lack of resolution in the distribution of sand injectites in hydrocarbon fields is common and makes it difficult to predict drilling challenges and plan for optimum production. A practical workflow was developed that enables the distinction of shale and sand bodies by using a combination of low-resolution seismic data and high-resolution resistivity log data. Measured resistivity logs were used to predict synthetic velocity logs, which accurately match shale velocities and over- or underestimate velocities of other rock types. The synthetic velocity logs were spatially distributed in a 3D cube in order to predict synthetic velocities in between and away from the well locations. The 3D cube was representative of a field. It covered the interval from the seabed to below the reservoir. The spatial distribution was based on a geostatistical approach guided by measured seismic interval velocities. A residual velocity cube was calculated from the measured and synthetic velocities. The residual velocity cube produced near-zero velocities for shaly materials and velocity over- or underestimates for other rock types. Interpretation of the residual velocity cube required the identification of strong stratigraphic markers. The markers were removed from the residual cube by setting their specific layer velocities to 0 m/s. The final information stored in the residual velocity cube was then related to the over- or underestimated velocities in sand bodies.


2020 ◽  
Vol 12 (18) ◽  
pp. 2912
Author(s):  
Sixin Liu ◽  
Qi Lu ◽  
Hongqing Li ◽  
Yuanxin Wang

China is strongly dependent on railway transportation, but the frost heaving of the subgrade in cold regions has seriously affected the safety and comfort of trains. Moisture content is an essential parameter in the subgrade frost heave. Non-destructive and efficient geophysical methods have great potential in measuring the moisture content of railway subgrade. In this paper, we use the common mid-point (CMP) measurement of ground penetrating radar (GPR) to estimate the propagation velocity of electromagnetic waves in a subgrade application. We establish a synthetic model to simulate the railway subgrade structure. The synthetic CMP gathers acquired from shallow and thin layers are seriously disturbed by multiple waves and refraction waves, which make the routine velocity analysis unable to provide accurate velocities. Through the analysis of numerical simulation results, it is found that the primary reflection waves, multiple waves, and refraction waves are dominant in different offset ranges of CMP gather. Therefore, we propose a solution of the optimal gather at a certain range of offset dominated by the primary reflection wave to calculate the velocity spectrum and extract the accurate velocities for the subgrade model. The relative dielectric constants of the corresponding layers are calculated after the stacking velocities are converted into the interval velocities. Then, the moisture content is obtained by the Topp formula, which expresses the relationship between dielectric constant and moisture content. Finally, we apply the optimal gather scheme and the above interpretation process to the GPR data acquired at the railway site, and we form a long moisture content profile of the railway subgrade. Compared with the polarizability measured by the induced polarization (IP) method, it is found that the regions with high moisture content correspond to polarizability anomalies with different strengths. The comparison shows the reliability of GPR results to some extent.


Author(s):  
Handoyo ◽  
Mochammad Puput Erlangga ◽  
Paul Young

This research ilustrate the generation of acoustic impedance inversion in the absence of well log using stacking velocity input in Salawati Basin, Papua, Indonesia using data obtained from seismic lines and stacking velocity section. Initial acoustic impedance modelswere first before the inversion process and were created by spreading the value of well log data to the all seismic CDP. The calculated acoustic impedance logs from standard sonic and density logs were used to build the initial model of acoustic impedance.First, the stacking velocities was first interpolated on a grid that has the same size as the seismic data using by means of Polynomial algorithm. This was closely followed by the conversion of the stacking velocities to interval velocities using Dix’s equation. The matrix densities were estimated by simple rock physics approach i.e. Gardner’s equation as a velocity function. The initial model of acoustic impedance was calculated by multiplying the densities section and interval velocities section. The resulting initial model of acoustic impedance was inverted to obtain the best of acoustic impedance section based on reflectivity.


2020 ◽  
Vol 192 ◽  
pp. 01003
Author(s):  
Evgeny Shevkun ◽  
Aleksander Leshchinsky ◽  
Andrey Plotnikov

The dynamics of the development of an industrial mass explosion at deceleration intervals of 150x200 ms on a frame-by-frame video recording on a consumer video camera with a shooting frequency of 25 frames per second is studied. Possibilities of visual assessment of the explosion site of individual borehole charges are evaluated. The main difficulties in recording processing are caused by the difference in the intervals between frames (40 ms) and decelerations between charges (50 ms). A significant deviation of the actual deceleration intervals from the nominal value was revealed, which significantly changes the actual picture of the development of a mass explosion, including an increase in the actual development time of a mass explosion against the calculated one. The passage through the zones of the location of individual borehole charges up to 40 stress waves was established. Such multiple impacts of stress waves are expressed in a decrease in the magnitude of the interval velocities of dust and gas emissions as the number of impacts of stress waves increases. Due to the multiple effects of stress waves in the extension stage, the fracturing of the rock mass increases. This is expressed in a decrease in the dynamics, and then in the termination of the outburst of bottom hole material as the disturbance of rocks in the prefracture zone increases. There is no breakdown of rocks; the “ore-rock” contacts have retained their original position, which makes it possible to reduce the dilution of ore to a minimum.


2020 ◽  
Vol 147 (1) ◽  
pp. EL13-EL18
Author(s):  
Charles W. Holland ◽  
Samuel Pinson

2018 ◽  
Vol 23 (3) ◽  
pp. 349-361
Author(s):  
Andrew D. Parsekian

Ground penetrating radar (GPR) is a powerful hydrogeophysical tool for estimating porosity and water content of geologic materials using radar wave velocities and appropriate petrophysical relations. In substrates with more than one layer of interest, surface-based multi-offset measurements require careful analysis to accurately retrieve physical properties for each layer. Frequently, Dix inversion is used to calculate interval velocities, however the assumptions and limitations of this approach are widely known. In particular for survey geometries and targets encountered with GPR, the assumptions inherent to Dix inversion are readily violated, and therefore inverse modeling is required to avoid velocity error. While the impact on velocity incurred by violating the assumptions of Dix inversion is well understood, the effects on water content estimates have not been widely reported and are therefore the subject of this work. In a subsurface representative of an unsaturated zone overlying an aquifer, error in excess of 50% in water content due to violating the assumptions of Dix inversion is demonstrated. Examples are shown using raytracing inversion to solve for subsurface water content structure that avoids the errors inherent to Dix inversion. These results are intended to underscore the importance of minimizing assumptions and using more correct physics when analyzing multi-offset GPR data, particularly due to the large potential errors that may be encountered if water content estimation is the main objective.


Sign in / Sign up

Export Citation Format

Share Document